Math, asked by Anonymous, 13 hours ago

Q.1. If the vectors i -2j+ k, ai – 5j + 3k & 5i - 9j + 4kare coplanar, then the value of a is. a) 3. b)2. c) -3. d)-2 ((≧∇≦))​

Answers

Answered by senboni123456
5

Step-by-step explanation:

Goven vectors be

 \tt{ \vec{a} =  \hat{i} - 2 \hat{j} +  \hat{k}} \\ \tt{ \:  \:  \:  \:  \:   \vec{b} =  a\hat{i} - 5 \hat{j} + 3 \hat{k}} \\ \tt{  \:  \:  \:  \:  \: \vec{c} = 5 \hat{i} -9 \hat{j} +  4\hat{k}}

Since they are coplaner, so,

 \left[ \begin{array}{r} \vec{a} & \vec{b} &\vec{c}\end{array}\right] = 0

  \implies\left|  \begin{array}{ccc} 1 &  - 2 &1 \\a &  - 5 &3 \\ 5 &  -9 &4\end{array}\right|  = 0

  \implies1\left|  \begin{array}{cc}   - 5 &3 \\   -9 &4\end{array}\right|  - ( - 2)\left|  \begin{array}{cc}   a &3 \\   5 &4\end{array}\right|  + 1\left|  \begin{array}{cc}   a & - 5\\  5& - 9 \end{array}\right|= 0

  \implies1( - 20  + 27)  + 2(4a - 15)+ 1( - 9a + 25)= 0  \\

  \implies7 + 8a - 30 - 9a + 25= 0  \\

  \implies7   - a - 5= 0  \\

  \implies2   - a = 0  \\

  \implies a =2  \\

Similar questions