Math, asked by kk1000, 1 month ago

Q. 1) If y = 2^(log(cos x)) then find the value of dy/dx.

Q. 2) If y = log_7(log_7 x) then find dy/dx.

Refer attachments .

Attachments:

Answers

Answered by IamIronMan0
64

Step-by-step explanation:

1. Use chain rule

 \frac{dy}{dx}  =  \frac{d}{dx} ( log_{7}( log_{7}(x) )  \\  \\  =  \frac{1}{   log(7) .log_{7}(x) }  \frac{d}{dx}   ( log_{7}(x) ) \\  \\  =  \frac{1}{ log(7)  \frac{ log(x) }{ log(7) } } . \frac{1}{x log(7) }  \\  \\  =  \frac{1}{x log(x)  log(7) }

2.

 \frac{d}{dx}  {2}^{ log( \cos(x) ) }  \\  \\  = {2}^{ log( \cos(x) ) }log(2)  \frac{d}{dx} ( log( \cos(x) )  \\  \\  = {2}^{ log( \cos(x) ) } log(2). \frac{1}{ \cos(x) }  \frac{d}{dx} ( \cos(x)) \\  \\  = {2}^{ log( \cos(x) ) } log(2)( \frac{  -  \sin(x) }{ \cos(x) }  )\\  \\  = -  \log(2) \tan(x)  {2}^{ log( \cos(x) ) }

Answered by esuryasinghmohan
53

Step-by-step explanation:

given :

If y = 2^(log(cos x)) then find the value of dy/dx.

to find :

find the value of dy/dx.

solution :

  • ans 1. Let y = log(cos ex)

  • By using the chain rule, we obtain

  • ""dy"/"dx" = "d"/"dx"["log" (cos"e"^"x")]

  • `= 1/cos"e"^"x" . "d"/"dx"(cos"e"^"x")`

  • = 1/(cos"e"^"x"). (-sin"e"^"x"). "d"/"dx"

  • ("e"^"x")"

  • = (-sin"e"^"x")/(cos"e"^"x"). "e"^"x"

  • =-"e"^"x" tan"e"^"x", "e"^"x" # (2"n"+1)pi/2, "n"E "N"

  • answer 2 in attachment please check

Attachments:
Similar questions