Physics, asked by vidyadharjangir33, 3 months ago

Q.1 in a constant temperature process 70 moles of
an ideal gas at temperature 354 K attains a final
volume V, Work input during this process is
206 kJ. Initial volume V, of the gas
approximately satisfies the following relation
(e is the base of natural logarithm)
(a) V = V2 (b) V = eV2
Subject matter to MADE EASY Publications, New Del
(o) in
(d) V = In V2
Q.5 C​

Answers

Answered by bt106690
0

Answer:

please mark me bra list

Explanation:

Given,

P∝V

−2

n=2

T

1

=300K

T

2

=400K

PV

2

=const. . . . . .(1)

γ=2 (PV

γ

=constant)

The above equation shows that the process is adiabatic process,

The work done in adiabatic process in thermodynamics is given by

W=nR

γ−t

(T

1

−T

2

)

W=nR

2−1

(300−400)

W=−100nR=−2×100R

W=−200R

The correct option is B.

Answered by talasilavijaya
1

Answer:

Initial volume satisfies the equation V  = \frac{V_{2} }{e }

Explanation:

Given, moles of an ideal gas, n=70

temperature,  T=354 K

and work input during this process,  W=206 kJ

Since there is change in volume at temperature remaining constant, it is an isothermal process.

Work done in isothermal process is,

                                   W=2.3026nRTlog_{10}\frac{V_{2} }{V_{1} }

                \implies 206\times 10^{3} =2.3026\times 70 \times 8.31 \times 354 log_{10}\frac{V_{2} }{V} }

   \implies \frac{206\times 10^{3}}{2.3026\times 70 \times 8.31 \times 354}  = log_{10}\frac{V_{2} }{V }

                       \implies \frac{20600}{47305}  = log_{10}\frac{V_{2} }{V }

                        \implies 0.43  = log_{10}\frac{V_{2} }{V }

                     \implies 10^{0.43}  = \frac{V_{2} }{V }\implies 2.7  = \frac{V_{2} }{V }  

                                                   \implies e  = \frac{V_{2} }{V }\implies V  = \frac{V_{2} }{e }

Hence, initial volume, V  = \frac{V_{2} }{e }

Similar questions