Sociology, asked by vippandian3197, 1 year ago

Q 1) in how many different ways can the letters of the word 'leading' be arranged in such a way that the vowels always come together?

Answers

Answered by VedantiVJ
2
No of letters in the word "LEADING "= 7
no of constants = 4
no of vowels = 3
Since the vowels always come together, consider them as one unit.
therefore, now total no of letters = 1+4=5
Hence, the number of ways of arranging them = 5!
further the 3 vowels can be arranged amongst themselves in 3! ways.
therefore, the total number of arrangements in which vowels always come together = 5! * 3!
720
plzz mark brainliest if the answer is correct
Similar questions