Physics, asked by aryanshelar097, 9 months ago

Q.1) obtain equation v=u +a×t Q.2) obtain S=u×t+1/2×a×t^2 Q.3) obtain v^2-u^2=2as Q.4) distinguish speed and velocity Q.5) what is uniform circular motion? Write it's formula. Q.6) Define the following terms Displacement, velocity,speed, acceleration, uniform motion, non uniform motion

Answers

Answered by suchipambhar18
1

Answer:

1). We know , a=(v-u)/t

at=v-u

v=u+at

2). We know ,

Distance = average speed x time

s = t x (u+v)/2

s = t x ( u + u +at)/2

s = t x (2u +at)/2

s = t(u + 1/2at)

s = ut + 1/2at^2

3). We know , v = u + at

t = (v-u)/a  ...(i)

Substitute (i) in s = ut + 1/2 at^2

s=u(  v−u  )/a+  1/2a((   v−u  )/a)^ 2

⇒2as=2u(v−u)+(v−u)  2  

⇒2as=2uv−2u^2  −v^2 −2uv−u^ 2  

⇒2as=v ^2  − u^2  

⇒v^2 =u^2 +2as

4). Speed is the distance covered per unit time . It is a scalar quantity i.e. it does not depend upon direction.

Velocity is the displacement of a body per unit time . It is a vector quantity i.e it depends upon the direction of the movement.

5). Uniform circular motion is the accelerated motion of a body with  constant speed and variable velocity.

6). Displacement is the shortest distance covered by a body to reach one place to another

Acceleration is the change in speed per unit time.

Answered by shadowsabers03
1

1.

Consider a particle is at position \sf{x=0} with initial velocity \sf{v=u} at time \sf{t=0} and has displacement \sf{x=s} with a velocity \sf{v} at a time \sf{t} moving with constant acceleration \sf{a.}

We know acceleration is first derivative of velocity.

\longrightarrow\sf{a=\dfrac{dv}{dt}}

\longrightarrow\sf{dv=a\ dt}

\displaystyle\longrightarrow\sf{\int\limits_u^vdv=\int\limits_o^ta\ dt}

\displaystyle\longrightarrow\sf{\int\limits_u^vdv=a\int\limits_o^tdt}

\displaystyle\longrightarrow\sf{\big[v\big]_u^v=a\big[t\big]_o^t}

\displaystyle\longrightarrow\sf{v-u=a(t-0)}

\displaystyle\longrightarrow\sf{v-u=at}

\displaystyle\longrightarrow\underline{\underline{\sf{v=u+at}}}

2.

From first equation of motion,

\displaystyle\longrightarrow\sf{\dfrac{dx}{dt}=u+at}

\displaystyle\longrightarrow\sf{dx=(u+at)\ dt}

\displaystyle\longrightarrow\sf{\int\limits_0^sdx=\int\limits_0^t(u+at)\ dt}

\displaystyle\longrightarrow\sf{\int\limits_0^sdx=\int\limits_0^tu\ dt+\int\limits_0^tat\ dt}

\displaystyle\longrightarrow\sf{\int\limits_0^sdx=u\int\limits_0^tdt+a\int\limits_0^tt\ dt}

\displaystyle\longrightarrow\sf{\big[x\big]_0^s=u\big[t\big]_0^t+a\left[\dfrac{t^2}{2}\right]_0^t}

\displaystyle\longrightarrow\sf{s-0=u(t-0)+\dfrac{a}{2}\left(t^2-0^2\right)}

\displaystyle\longrightarrow\underline{\underline{\sf{s=ut+\dfrac{1}{2}\,at^2}}}

3.

We see that,

\displaystyle\longrightarrow\sf{a=\dfrac{dv}{dt}}

\displaystyle\longrightarrow\sf{a=\dfrac{dv}{dx}\cdot\dfrac{dx}{dt}}

Since \sf{\dfrac{dx}{dt}=v,}

\displaystyle\longrightarrow\sf{a=v\,\dfrac{dv}{dx}}

\displaystyle\longrightarrow\sf{v\ dv=a\ dx}

\displaystyle\longrightarrow\sf{\int\limits_u^vv\ dv=\int\limits_0^sa\ dx}

\displaystyle\longrightarrow\sf{\int\limits_u^vv\ dv=a\int\limits_0^sdx}

\displaystyle\longrightarrow\sf{\left[\dfrac{v^2}{2}\right]_u^v=a\big[x\big]_0^s}

\displaystyle\longrightarrow\sf{\dfrac{v^2-u^2}{2}=a(s-0)}

\displaystyle\longrightarrow\sf{\dfrac{v^2-u^2}{2}=as}

\displaystyle\longrightarrow\underline{\underline{\sf{v^2-u^2=2as}}}

4.

Speed of a body is the distance covered by it in a path to travel from one point to another in unit time.

  • Speed = Distance travelled / Time

  • Speed is a scalar quantity, i.e., it has only magnitude but no direction.

  • Speed is always greater than or equal to zero.

  • SI unit of speed is \sf{m\,s^{-1}.}

  • Dimension = \sf{\left[L\,T^{-1}\right].}

Velocity of a body is change in its position from one point to another in unit time along the straight line path between the two points.

  • Velocity = Displacement / Time

  • Velocity is a vector quantity, i.e., it has magnitude as well as direction.

  • Velocity can be positive, negative or even zero.

  • SI unit of velocity is \sf{m\,s^{-1}.}

  • Dimension = \sf{\left[L\,T^{-1}\right].}

5.

Uniform circular motion is defined as the motion of a body along a circular path with uniform speed.

6.

Displacement:- Straight line path distance between initial and final points.

Velocity:- Rate of change of position of a body, or displacement of a body in unit time.

Speed:- Distance covered by a body in unit time.

Acceleration:- Rate of change of velocity of a body.

Uniform motion:- Motion of a body with constant speed.

Non - uniform motion:- Motion of a body with a varying speed.

Similar questions