Math, asked by Anonymous, 1 day ago

Q)1) Show that line AB is perpendicular to line BC, where A(1, 2), B (2, 4) and
C(0, 5).​

Answers

Answered by abhi569
79

If AB and BC are perpendicular to each other, the product of their slopes must be -1.

     Slope(AB) = (y₂ - y₁)/(x₂ - x₁)

                       = (4 - 2)/(2 - 1)

                       = 2         ...(1)

     Slope(BC) = (5 - 4)/(0 - 2)

                       = 1/(-2)

                       = -1/2       ...(2)

∵ Product of slope of AB and BC = 2(-1/2) = -1,     AB and BC are perpendicular

Answered by ᎮѕуcнσAεѕтнεтíc
119

★Question:-

  • Show that line AB is perpendicular to line BC, where A(1, 2), B (2, 4) and C(0, 5).

★Solution:-

As it is given that AB and BC are perpendicular to each other, the product of their slopes must be -1.

Slope(AB):- \large\sf \frac{y_2-y_1}{x_2-x_1}

\large\qquad \quad\quad \sf  \frac{4 - 2}{2 - 1}

 \large\sf  \qquad\quad \quad2 \:  \:  \:  \:  \:  \:  \: \qquad \qquad \qquad  \sf \color {red}(1)

Slope(BC):- \large\sf\frac{5-4}{0-2}

 \large\sf\qquad\quad \quad \frac{ \:  \: 1}{ - 2}

 \large\qquad\quad \quad \sf \frac{ - 1}{ \:  \:  \: 2}  \:  \:  \:  \:  \:  \:  \:  \:  \: \qquad \quad \qquad   \sf \color{red}(2)

Multiplying (1) and (2),

➺2 (-1/2)

➺(-1 × 1)

➺ -1

∴It is proved that AB is perpendicular to line BC.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions