Math, asked by rohitpraveen64, 9 months ago

Q.1 Solve using Cramer's rule: 6x+y-
3z=5; x+3y-2z=5; 2x+y+4z=8.​

Answers

Answered by MaheswariS
3

\textbf{Given:}

6x+y-3z=5

x+3y-2z=5

2x+y+4z=8

\textbf{To find:}

\text{Solution of the given system of equations}

\textbf{Solution:}

\text{The given system of equations can be written as}

\left(\begin{array}{ccc}6&1&-3\\1&3&-2\\2&1&4\end{array}\right)\left(\begin{array}{c}x\\y\\z\end{array}\right)=\left(\begin{array}{c}5\\5\\8\end{array}\right)

\Delta=\left|\begin{array}{ccc}6&1&-3\\1&3&-2\\2&1&4\end{array}\right|

\Delta=6(12+2)-1(4+4)-3(1-6)

\Delta=84-8+15=91

\Delta_x=\left|\begin{array}{ccc}5&1&-3\\5&3&-2\\8&1&4\end{array}\right|

\Delta_x=5(12+2)-1(20+16)-3(5-24)

\Delta_x=70-36+57=91

\Delta_y=\left|\begin{array}{ccc}6&5&-3\\1&5&-2\\2&8&4\end{array}\right|

\Delta_y=6(20+16)-5(4+4)-3(8-16)

\Delta_y=216-40+6=182

\Delta_z=\left|\begin{array}{ccc}6&1&5\\1&3&5\\2&1&8\end{array}\right|

\Delta_z=6(24-5)-1(8-10)+5(1-6)

\Delta_z=104+2-25=91

\text{By Cramer's rule}

x=\dfrac{\Delta_x}{\Delta}

x=\dfrac{91}{91}=1

y=\dfrac{\Delta_y}{\Delta}

y=\dfrac{182}{91}=2

z=\dfrac{\Delta_z}{\Delta}

z=\dfrac{91}{91}=1

\therefore\textbf{The solution is x=1, y=2 and z=1}

Find more:

Find x,y,z using cramers rule, if x-y+z=4, 2x+y-3z=0 and x+y+z=2

https://brainly.in/question/9052433

By Using cramer's rule solve the given linear equations.

x + y-Z=1; 8x + 3y - 6Z=1; 4x - y +3Z =1​

https://brainly.in/question/13937905

Similar questions