Math, asked by Anonymous, 1 month ago

Q.1: The cost of fencing a circular field at the rate of Rs. 24 per metre is Rs. 5280. The field is to be ploughed at the rate of Rs. 0.50 per m². Find the cost of ploughing the field (Take π = 22/7).

Q.2: The wheels of a car are of diameter 80 cm each. How many complete revolutions does each wheel make in 10 minutes when the car is travelling at a speed of 66 km per hour?

Q.3: Find the area of the sector of a circle with radius 4 cm and of angle 30°. Also, find the area of the corresponding major sector (Use π = 3.14)​

Answers

Answered by SachinGupta01
14

Solution : 1

 \bf \:  \underline{Given} :

  \sf \: Cost  \: of \:  fencing \:  circular  \: field = Rs.  \: 5280

 \sf \: Rate  \: of  \: ploughing  \: per  \: metre^{2} = Rs. \:  0.50

 \bf \:  \underline{To  \: find} :

 \sf \: We  \: have \:  to \:  find  \: the \:  cost  \: of  \: ploughing  \: the \:  field.

 \bf \:  \underline{\underline{Solution} }:

 \sf \: First \:  of  \: all  \: we \:  have \:  find \:  the \:  circumference \:  of \:  the \:  circular \:  field.

 \sf \: Circumference =  \dfrac{Total \:  cost}{Cost \:  per  \: metre}

 \sf \: Circumference =  \dfrac{5280}{24}

 \sf \: Circumference =  220

 \sf \:  \underline{Therefore},

 \sf \:  \implies \: 2 \pi r =  220

 \sf \:\implies \: 2 \times  \dfrac{22}{7} \times  r =  220

 \sf \: \implies \:\dfrac{44}{7} \times  r =  220

 \sf \: \implies \:r =  220 \times \dfrac{44}{7}

 \sf \: \implies \:r =   35

 \sf \: \underline{ So,  radius  \: of \:  the \:  circular  \: field = 35  \: metre. }

 \bf \: Now,

 \sf \: We  \: will  \: find \:  the \:  area.

 \sf \: Area \:  of  \: circle =  \pi  r^{2}

 \sf \: \implies \:   \dfrac{22}{7}  \times 35^{2}

 \sf \: \implies \:   \dfrac{22 \times 1225}{7}

 \sf \: \implies \:   3850m^{2}

\sf \: Cost  \: of  \: ploughing \:  per  \: m ^{2} = Rs. \:  0.50

 \sf \: So,   cost  \: of  \: ploughing \:  3850 \:  m^{2} = 3850 \times 0.05

 \underline{ \boxed{  \pink{\sf \: Hence, C ost  \: of  \: ploughing \:  3850 \:  m^{2} = Rs.  \: 1925}}}

______________________________________

Solution : 2

 \bf \:  \underline{Given} :

 \sf \: Diameter  \: of \:  wheel  \: of \:  a  \: car = 80 \:  cm

 \sf \: The  \: speed  \: of  \: the \:  car = 60  \: km \:  per \:  hrs.

 \small \sf \: Time  \: at  \: which \:  the \:  car \:  can \:  cover  \: a \:  distance  \: at \:  a  \: speed \:  of \:  66  \: km \ hrs = 10  \: minutes.

 \bf \:  \underline{To  \: find} :

 \sf \: We \:  have  \: to  \: find \:  the  \: no. \:  of  \: complete \:  revolution \:  that  \: a  \: car  \: can  \: cover  \: in  \: 10 \:  days.

 \bf \:  \underline{\underline{Solution} }:

 \sf \: First \:  of  \: all  \: we \:  will  \: calculate \:  the \:  distance  \: traveled \:  by \:  car \:  in  \: 10 \:  minutes.

 \sf \: Before \:  that, we \:  have \:  to \:  convert \:  the \:  minutes  \: into  \: hrs.

 \sf \: \implies \:  1 \: minute \:  =  \:  \dfrac{1}{60}  \: hours

 \sf \: \implies \:  10 \: minute \:  =  \:  \dfrac{1}{60}  \: hours

 \sf \: \implies \:   \:  \dfrac{1}{6}  \: hours

 \sf \: \underline{ As \:  we  \: know \:  that},

 \sf \: Distance = Speed \times Time

 \sf \: Distance = 66 \times  \dfrac{1}{6}

 \sf \: Distance = 11 \: km

 \sf \: Now,  we  \: will \:  convert \:  the  \: distance  \: coved \:  by \:  car \:  from \:  km \:  to  \: cm.

 \sf \: \implies \:   11 \: km \:  = 11 \times 100000

 \sf \: \implies \:   11 \: km \:  = 1100000 \: cm

 \sf \: Now,  \: we  \: will  \: calculate \:  the  \: circumference.

 \sf \: For  \: that \:  we  \: need \:  to  \: find  \: the  \: radius.

 \sf \: Radius =  \dfrac{Diameter}{2}

 \sf \: Radius =  \dfrac{80}{2}

 \sf \: Radius =  40

 \sf \: Now, it's \:  time \:  to \:  find  \: the \:  circumference.

 \sf \: Circumference = 2 \pi r

 \sf \: Circumference = 2  \times  \dfrac{22}{7}  \times 40

 \sf \: Circumference =  \dfrac{422}{7}  \times 40

 \sf \: Circumference =   \dfrac{1760}{7}  \: cm \: or \: 251.43 \: cm

 \bf \: Now,

 \sf \:  No.  \: of \:  revolution \times Circumference = Distance \:  traveled  \: in \:  10  \: minutes

 \sf \:  No.  \: of \:  revolution \times  \dfrac{1760}{7}  = 11

 \sf \:  No.  \: of \:  revolution  = 4375

 \underline{ \boxed{ \pink{ \sf \: So, \:  the \:  number \: of \:  revolution \:  in  \: 10  \: minutes = 4375}}}

______________________________________

Attachments:
Answered by BrainlyBeast
9

Answer:

Question 1 :

Solution

Rate at which the field is fenced = Rs 24 per metre

Cost of fencing = Rs 5280

Rate of ploughing the field Rs 0.50 per sqm.

perimeter =  \frac{cost \: of \: fencing}{rate}

 \implies \:  \frac{5280}{24}  = 220m

The perimeter is 220 m

Now , the radius of the circular field ,

2\pi \: r = 220 \\  \implies \: r \:  =  \frac{220 \times 7}{44}  = 35m

Cost of ploughing the field = area × rate

 \implies \:  \frac{22}{7}  \times 35 \times 35 \times 0.50 =rs \:  1925

_______________________________________

Question 2 :

Solution

Diameter = 80 cm = 0.8 m

time taken to travel = 10 m = 1/6 hr

speed of car = 66km/hr

distance \:  = speed \times time \\  \implies \: 66 \times  \frac{1}{6}  = 11km = 11000m

Distance travelled in one revolution = πd

 \frac{22}{7}  \times  \frac{8}{35}  =  \frac{88}{35} m

number \: of \: revolution \:  =  \frac{total \: distance}{distance \:travelled \: in \: one \: revolution}

 \implies \: 11000 \div  \frac{88}{35} \\  \\   \implies \:  \: 11000 \times  \frac{35}{88}  = 4375

___________________________________

Question 3 :

Formula for finding area of sector =

 \frac{ \theta}{360}  \times \pi {r}^{2}

 \implies \:  \frac{30}{360}   \times 3.14 \times 4 \times 4

 = 4.19 {m}^{2}

Area of major sector

\pi {r}^{2}  - area \: of \: minor \: sector

 \implies \: 3.14 \times 4 \times 4 - 4.19

 \implies \: 46.05 {m}^{2}

Similar questions