Math, asked by kumaresh7, 11 months ago

Q.1. The difference between the length and breadth of a rectangle is
33 m. If its perimeter is 134 m, then its area is:​

Answers

Answered by CaptainBrainly
49

Given,

Perimeter of the rectangle = 2[l + b] = 134m

==> 2[l + b] = 134

==> l + b = 134/2 = 67 -------(1)

The difference between the length and breadth of a rectangle = 33m

==> l - b = 33 ------------(2)

Solve eq - (1) & (2)

==> 2L = 100

==> l = 100/2

==> l = 50

Length = 50m

Substitute l = 50 in eq - (1)

==> (50) + b = 67

==> b = 67 - 50

==> b = 17

Breadth = 17m

We know that,

Area of Rectangle = length × breadth

==> = 50 × 17

==> = 850m²

Therefore, the area of Rectangle is 850cm².

Answered by TRISHNADEVI
29

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \underline{ \mathfrak{ \:  \: Given : \:  \: }} \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \text{Difference between the length and breadth } \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \text{of the rectangle = 33 m} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \text{Perimeter  of  the  rectangle = 134 m} \\  \\  \underline{ \mathfrak{ \:  \: To \:  \:  find : \: }} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \text{ Area of the rectangle = ? }

 \underline{ \mathfrak{ \:  \: Suppose, \:  \: }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \bold{Length \:  \:  of  \:  \: the  \:  \: rectangle = l } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{Breadth  \:  \: of  \:  \: the \:  \:  rectangle = b}

  \underline{ \mathfrak{ \:  \: We  \:  \: know  \:  \: that, \:  \: }} \\  \\  \boxed{ \bold{ \pink{ \:  Perimeter  \:  \: of \:  \:  a  \:  \: rectangle = 2 (Length + Breadth)  \: }}}

 \underline{ \mathfrak{ \: According  \:  \:  to \:  \:  the \:  \:  first \:  \:  condition, \: }} \\  \\  \:  \:  \:  \:  \:  \:  \:   \:  \:  \sf{l - b = 33  \: m \:  \:  -  -  -  -  -  -  -  -  > (1) } \\  \\  \underline{ \mathfrak{ \: According  \:  \:  to \:  \:  the \:  \:  second \:  \:  condition, \: }} \\  \\  \:  \:  \:  \:  \:  \:  \:   \:  \:  \sf{2 ( l +  b) = 134 \: m} \\  \\  \sf{ \implies l + b =( \frac{134}{2} )\: m} \\  \\  \:  \:  \:  \:  \:  \:  \sf{ \therefore \:  l + b = 67  \: m\:  \:  -  -  -  - - -  -  -  > (2)}

 \tt{(1) + (2) \implies 2 \: l = 100} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{ \implies l =\frac{100}{2}} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \tt{ \therefore \:  \:  l=50 } \\  \\  \tt{(2)-(1)\implies 2 \: b = 34 } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{\implies  b =\frac{34}{2}  }\\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{\therefore \:  \:  b =17} \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \tt{ \therefore  \: Length \:  \:  of  \:  \: the  \:  \: rectangle,l = 50  \: m}  \\  \bold{And, } \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{Breadth  \:  \: of \:  \:  the \:  \:  rectangle,b  = 17 \:  m }

 \underline{ \mathfrak{ \:  \: We \:  \:  know  \:  \: that, \:  \: }} \\  \\  \boxed{ \bold{ \pink{ \:  \: Area \:  \:  of  \:  \: a  \:  \: rectangle = Length \times Breadth \:  \: }}}

 \rm{\therefore  \: Area  \:  \: of \:  \:  the \:  \:  rectangle = l \times b } \\  \\  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \rm{= (50 \times 17)   \:  \: m{}^{2} } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \: \rm{= 850 \:  \: m  {}^{2} }

 \bold{Hence, } \\   \:  \:  \:  \:  \:  \:  \:  \: \bold{Area  \:  \: of \:  \:  the \:  \:  rectangle =  \red{850 \: m {}^{2} }}

Similar questions