Math, asked by snaziakamal, 5 months ago

Q.1
The line y = 2x-8 cuts the curve 2x2+ y2 - 5xy + 32 = 0) at the points A and B.
Find the length of the line AB

Answers

Answered by senboni123456
18

Step-by-step explanation:

The given line is y=2x-8

The given curve is 2 {x}^{2}  + {y}^{2}  - 5xy + 32 = 0

Now,

2 {x}^{2}  + (2x - 8)^{2}  - 5x(2x - 8) + 32 = 0 \\

 \implies2 {x}^{2}  + 4x^{2}    - 32x+  64  - 10 {x}^{2}   + 40x + 32 = 0 \\

 \implies -  4 {x}^{2}     + 8x+  96   = 0 \\

 \implies  {x}^{2}      - 2x -   24   = 0 \\

 \implies  {x}^{2}      - 6x + 4x -   24   = 0 \\

 \implies  x(x    - 6) + 4(x -   6)   = 0 \\

 \implies  (x + 4)(x    - 6)  = 0 \\

 \implies  (x + 4) = 0 \:  \: or \:  \: (x    - 6)  = 0 \\

 \implies  x  =  -  4 \:  \: or \:  \: x    =  6 \\

Then,

 \implies \: y =  - 16 \:  \: or \:  \: y = 4

So, the coordinates of point of intersection are

 (-4,-16)\:\:\:\&\:\:\:(6,4)

Required distance

AB =  \sqrt{ {(6 + 4)}^{2}  + (4 + 16) ^{2} }

 \implies \: AB =  \sqrt{ {(10)}^{2}  + (20) ^{2} }  \\

 \implies \: AB =  \sqrt{ 100  + 400 }  \\

 \implies \: AB =  \sqrt{ 500 }  \\

 \implies \: AB =  10\sqrt{ 5}  \\

Similar questions