Math, asked by Truebrainlian9899, 4 months ago

Q 1) The Perimeter of triangle is 72cm and its sides are in the ratio 3:4:5 . Find it's area and the Length of the altitude Corresponding to the longest side .

Q2) Find the base of an isosceles triangle whose area is 192cm² and the Length of one of the equal sides is 20cm.

Answers

Answered by pp0847148
111

☞︎︎︎ Solution :

  \:

Q1)

 \:

Given :

 \:

  • Perimeter of triangle = 72cm

  • Ratio of the sides = 3:4:5

 \:

➝ Let the constant of proportionality be = k

 \:

⇒ 3k + 4k + 5k = 72cm

⇒ 12k = 72cm

 \:

 \large \: ⇒ \rm \: k =  \dfrac{72}{12}

 \:

 \boxed{ \large \therefore  \underline{\: \rm \: k =  6cm}}

 \:

The sides are -

 \:

  • 3 × 6 = 18cm

  • 4 × 6 = 24cm

  • 5 × 6 = 30cm

 \:

Herons Formula :

 \:

 \large \mapsto   \boxed{\: \mathtt{ \sqrt{s(s - a)(s - b)(s - c)} }}

 \:

  • Finding Area :

 \:

 \large =  \rm \mathtt{ \sqrt{36(36 - 18)(36 - 24)(36 - 30)} }

 \:

 \large ⇒ \mathtt{ \sqrt{36(18)(12)(6)} }

 \:

 \large ⇒ \mathtt{ \sqrt{(648)(72)} }

 \:

 \large ⇒ \mathtt{ \sqrt{(46656)} }

 \:

216cm²

 \:

Finding altitude :

 \:

  • Height = h

 \:

➦ We know ,

 \:

 \:  \:  \:  \:  \:  \:  \:  \:  \: Area of triangle =

 \:

 \large ➬ \: \boxed{  \:  \: \mathtt{ \dfrac{1}{2}  \times base \times height}}

 \:

  • Base = 30cm

  • Area = 216cm²

 \:

 \large⇒ \mathtt{ \dfrac{1}{2}  \times 30 \times h = 216 {cm}^{2} }

 \:

 \large⇒ \mathtt{ \dfrac{1}{ \cancel2}  \times  \cancel{30} \: 15 \times h = 216 {cm}^{2} }

 \:

  • On Transposing The Terms :

 \:

 \large⇒  \: \mathtt{h  \: =  \dfrac{216}{15} } \\  \\

  \boxed{\boxed{ \large  \therefore \:  \underline{\tt{altitude = 14.4cm}}}}

 \:

_____________________________________________

 \:

Q2 )

 \:

Given :

 \:

  • Area = 192cm²

  • Side¹ = 20cm

  • Side² = 20cm

 \:

 \large⇒ \:  \mathtt{h =  \sqrt{b -  \dfrac{ {a}^{2} }{4} } }

 \:

 \:  \:  \:  \:  \:  \:  \:  \:  \: Area of triangle =

 \:

 \large ➬ \: \boxed{  \:  \: \mathtt{ \dfrac{1}{2}  \times base \times height}}

 \:

  \large⇒   \mathtt{ \dfrac{1}{2}  \times  a\times h  = \dfrac{1}{2}  \times a \times  \sqrt{b -  \dfrac{ {a}^{2} }{4} } }

 \:

  \large⇒ \mathtt{ \dfrac{1}{2}  \times  {a}^{2} \times  \sqrt{ \dfrac{ {b}^{2} }{ {a}^{2} }  -  \dfrac{1}{4} }  }

 \:

  • Area Given By -

 \:

  \large⇒ \mathtt{ \dfrac{1}{2}  \times  {x}^{2} \times  \sqrt{ \dfrac{ {20}^{2} }{ {x}^{2} }  -  \dfrac{1}{4} }  }

 \:

  \large⇒ \mathtt{ \dfrac{ {x}^{2} }{2}  \times   \sqrt{ \dfrac{ {1600} -  {x}^{2}  }{ {4x}^{2} }  }  }

 \:

  \large⇒ 192 { \rm \: cm }^{2} =  \\  \\   \large \:  \:  \:  \:  \:  \mathtt{ \dfrac{ {x}^{2} }{2}  \times   \sqrt{ \dfrac{ {1600} -  {x}^{2}  }{ {4x}^{2} }  }  }

 \:

  \large⇒ 192 { }^{2} =     \large \  \mathtt{ \dfrac{ {x}^{2} }{2}  \times   { \dfrac{ {1600} -  {x}^{2}  }{ {4x}^{2} }  }  }

 \:

⇒ 192² × 16 = x²(1600 - x²)

⇒ x⁴ - 1600x² + 589824 = 0

 \:

Splitting The Middle Term -

 \:

  • t = x²

 \:

⇒ t² - 1600t + 589824 = 0

⇒ t² - 1024t - 576t + 589824 = 0

⇒ t(t - 1024) - 576(t - 1024) = 0

⇒ t = 1024 or 576

 \:

 \large⇒ \:  \mathtt{ {x}^{2}  = 1024 \: \:  \:  or \:  \:  \: 576}

 \:

 \large⇒ \:  \mathtt{ {x}^{}  =  \sqrt{ 1024 }\: \:  \:  or \:  \:  \:  \sqrt{ 576}}

 \:

 \large{ \boxed{\therefore  \underline{\: \mathtt{ {x}^{}  = 32cm \: \:  \:  or \:  \:  \:24cm} }}}

Answered by ayush9beyblader
5

Answer:

hii

Step-by-step explanation:

see answer above

so nice

Similar questions