Math, asked by deep4411, 1 year ago

Q 1. Vivek found the product, P, of two two-digit natural numbers, M
and N. He then reversed the digits of each of Mand N and found the
product of the resultant numbers. Interestingly, he found both
products to be the same. If the product of the tens digit of M and the
tens digit of N is prime, find the sum of all the possible values of P
that Vivek could have obtained.
(1) 2604
(2) 2712
(3) 2627
(4) 4684
(5) 4664​

Answers

Answered by amitnrw
6

4684 is the sum of all the possible values of P that Vivek could have obtained

Step-by-step explanation:

Let say  M  = AB

& N = CD

P = M*N

P =(10A + B)(10C + D)

=> P = 100*A*C + 10A*D + 10B*C + B*D

Digit reverse

P = (10B + A)(10D + C)

=> P = 100B*D  + 10B*C + 10A*D + A*C

100A*C + 10A*D + 10B*C + B*D = 100B*D  + 10B*C + 10A*D + A*C

=> 99A*C = 99B*D

=> A*C  = B*D

product of the tens digit of M and the tens digit of N is prime

=> A*C  is Prime

A  * C   is Prime

1    *  2   , 1   *   3  , 1  *   5  , 1   *  7  ,

2  *  1 ,  3  *  1 ,  5  *  1  , 7  *  1

AB = 11   CD = 22      P = 242

AB = 12   CD  = 21    P = 252

Below two cases will produce same P

AB = 21   CD  = 12

AB = 22  CD =   11  

AB = 13   CD = 31      P = 403

AB = 11   CD  = 33    P = 363

AB = 15   CD = 51      P = 765

AB = 11   CD  = 55    P = 605

AB = 17   CD = 71      P = 1207

AB = 11   CD  = 77    P = 847

Adding all = 242 + 252 + 403 + 363 + 765 + 605 + 1207 + 847

= 4684

Similar questions