Q 10) find each of the following product
1. (2x-3y) (2x-3y) 2. (3x-2y) (2x-3y)
3. (1/2x-1/5y) (1/2x-1/5y)
4. (3x+2y) (3x-2y)
Answers
Step-by-step explanation:
Given:-
1. (2x-3y) (2x-3y)
2. (3x-2y) (2x-3y)
3. (1/2x-1/5y) (1/2x-1/5y)
4. (3x+2y) (3x-2y)
To find:-
find each of the following product ?
Solutions:-
1.Given expression is (2x-3y) (2x-3y)
=> (2x-3y)^2
This is in the form of (a-b)^2
Where , a = 2x and b = 3y
We know that
(a-b)^2 = a^2 - 2ab + b^2
(2x-3y)^2=>
(2x)^2 - 2(2x)(3y) + (3y)^2
=> 4x^2 - 12xy +9y^2
(2x-3y) (2x-3y) = 4x^2 - 12xy +9y^2
-------------------------------------------------------
2.Given expression is (3x-2y) (2x-3y)
=> 3x(2x-3y) -2y(2x-3y)
=> (3x)(2x)-(3x)(3y) -(2y)(2x) -(2y)(-3y)
=> 6x^2 -9xy -4xy +6y^2
=> 6x^2 -13xy +6y^2
(3x-2y) (2x-3y) = 6x^2 -13xy +6y^2
--------------------------------------------------------
3.Given expression is (1/2x-1/5y) (1/2x-1/5y)
It can be written as (1/2 x - 1/5 y)^2
This is in the form of (a-b)^2
Where , a = 1/2 x and b = 1/5 y
We know that
(a-b)^2 = a^2 - 2ab + b^2
(1/2 x - 1/5 y)^2=>
=> (1/2 x)^2 -2(1/2 x) (1/5 y ) +(1/5 y )^2
=> (1/4 x ^2 )- 2(1/2)(1/5)(xy) + (1/25 y^2)
=>(1/4 x^2 - (1/5 xy ) + (1/25 y^2)
or
=> x^2/4 - xy /5 + y^2/25
or
LCM of 4,25,5 is 100
=> (25x^2-20xy+4y^2)/100
(1/2x-1/5y) (1/2x-1/5y)
=1/4 x^2-1/5 xy +1/25 y^2
(or) x^2/4 - xy /5 + y^2/25
(or) (25x^2-20xy+4y^2)/100
-----------------------------------------------------------
4.Given expression is (3x+2y) (3x-2y)
It is in the form of (a+b)(a-b)
Where , a = 3x and b = 2y
we know that
(a+b)(a-b)=a^2-b^2
Now
(3x+2y) (3x-2y)=>
=> (3x)^2 - (2y)^2
=> (3x×3x) - (2y×2y)
=> 9x^2-4y^2
(3x+2y)(3x-2y)= 9x^2 - 4y^2
--------------------------------------------------------
Used formulae:-
- (a-b)^2 = a^2 -2ab +b^2
- (a+b)(a-b)=a^2-b^2