Q.10
In a ΔABC, show thatsin²A + sin²B - sin²C = 2 sin A. sin B. cos C
Answers
Answered by
1
Answer:
Consider the problem,
sin2A+sin2B+sin2c=2+2cosA.cosB.cosc
We can write sin2A as,
sin2A=21−cos(2A)
Therefore,
LHS=21−cos(2A)+21−cos(2B)+21−cos(2C)=23−(cos(2A)+cos(2B)+cos(2C))=21(3−(2cos(A+B)cos(A−B)+cos(2C)))C=180−(A+B)cos(C)=cos(180−(A+B))cos(C)=−cos(A+B)
Therefore,
=23−(−2cos(C)cos(A−B)+cos(2C))cos(2C)=2
Answered by
1
L.H.S. = sin2A + sin2B – sin2C = 1212[1-(cos 2A + cos2B – cos2C)] = 1212[1-{{2cos(A + B). Cos(A – B) – 2cos2C+1}] = 1212[+2cosC . cos(A – B) + 2cos2c] = 1212[2cosC(cos(A – B) + cosC] = 1212[2cosC(cos(A – B) – cos(A + B))] = 1212[2cosC[-2sin A.sin(-B)]] = 2 sinA sinB sin
Similar questions