Math, asked by harshitbhai2012, 4 months ago

Q.10 The area of the whole surface of a cone is 64 sq. m. and the slant height is 5 times the
radius of the base. Find the radius of the base.​

Answers

Answered by ScienceBreak
0

Step-by-step explanation:

Surface area of cone is given by πrs

where s is slant height.

According to question, if radius is x then s must be 5x

So (π)(x)(5x) = 64sq.m

π5x^2 = 64sq.m

Taking pie = 22/7

x= √(64×7/5×22)

= √4.07

= 2.017m

So x = 2.017m

Answered by krishnaanandsynergy
0

Answer:

We can find the radius of the base using the area of the whole surface of a cone is 64 sq. m. and the slant height is 5 times the radius of the base.

Final Answer: Radius of the base r = 1.84m

Step-by-step explanation:

From the given question,

  • The area of the whole surface of a cone =64m^2
  •                                   Radius of the base  =r
  •                                               Slant height  =l
  • The area of the whole surface of a cone  =\pi r(r+l)

Step 1:

  • Equate the formula of area of a cone and area value.That is,

                   \pi r(r+l)=64

Step 2:

  • slant height is 5 times the radius of the base.That is,

         Slant height  l=5\times r

  • Substitute l value in step 1.

                \pi r(r+5r)=64

                      \pi r(6r)=64

                         6\pi r^2=64

Step 3:

  • The value of \pi is 3.14.
  • Substitute \pi value in step 2 equation.

            6\times 3.14\times r^2=64

                             r^2=\frac{64}{6\times 3.14}

                             r^2=\frac{64}{18.84}

                             r^2=3.397

Step 4:

  • To find the radius value r take square root for step 3 equation.

                              r=\sqrt{3.397}

                              r=1.84m

Final Answer:

Radius of the base r = 1.84m

                   

Similar questions