Math, asked by kajalbhatasana347, 1 month ago

Q.12 The sides of a triangle are in the ratio of 3:5:7 and its perimeter is 300 cm. Its area will be: a) 1000✓3. b)1700✓3. c)1900✓3. d)1500✓3​

Answers

Answered by Anonymous
45

Answer :

  • Area of triangle is 1500√3 cm²

Given :

  • The sides of a triangle are in the ratio of 3:5:7
  • Perimeter is 300 cm

To find :

  • Area

Solution :

Given,the sides of a triangle are in the ratio of 3:5:7 so,

  • Let the sides of triangle be 3x , 5x and 7x

Perimeter is 300cm so,

➟ 3x + 5x + 7x = 300

➟ 15x = 300

➟x = 300/15

x = 20cm

Sides are :

  • 3x = 3(20) = 60 cm
  • 5x = 5(20) = 100 cm
  • 7x = 7(20) = 140 cm

Finding the semi Perimeter of triangle :

We know that

  • Semi perimeter of triangle = a + b + c / 2

Where,

  • a is 60 cm
  • b is 100 cm
  • c is 140 cm

Substituting the value :

➟ s = a + b + c / 2

➟ s = 60 + 100 + 140 / 2

➟ s = 300/2

s = 150cm

Semi perimeter of triangle is 150cm

Finding the Area of triangle :

We know that

  • Area of triangle = √s(s - a) (s - b) (s - c)

Where,

  • s is semi perimeter of triangle
  • a , b , c is a sides of triangle

Substituting the value :

➟Area of triangle = √s(s - a) (s - b) (s - c)

➟ √150(150 - 60) (150 - 100) (150 - 140)

➟ √150(90) (50) (10)

➟ √5 × 3 × 10 × 3 × 3 × 10 × 5 × 10 × 10

➟ 100 × 5 × 3√3

➟ 1500√3 cm²

Hence, Area of triangle is 1500√3 cm²

Answered by Anonymous
91

\underline{\underline{\sf{\maltese\:Given\::-}}}

  • The sides of a triangle are in the ratio of 3:5:7 .

  • The perimeter is 300 cm.

\underline{\underline{\sf{\maltese\:To\:find\::-}}}

  • Area of the triangle .

\underline{\underline{\sf{\maltese\:Formula\:used\::-}}}

  • Semi-perimeter = a + b + c/2

  • Area of triangle = √s(s - a) (s - b) (s - c)

\underline{\underline{\sf{\maltese\:Concept\::-}}}

\odot Here we have given that the sides of the triangle are in the ratio of 3:5:7. as we know that to find the area we need sides of the triangle so firstly we will find out the sides of the triangle.

\odot After finding the sides we will find out the semi-perimeter of the triangle by using the formula ( Semi-perimeter = a + b + c/2 )  

\odot Now after finding the semi-perimeter of the triangle. we will find out the area of the triangle by substituting the given values in the formula Area of triangle = √s(s - a) (s - b) (s - c)

\underline{\underline{\sf{\maltese\:Full\:Solution\::-}}}

\bigstar Let us find out the sides of the triangle.

\underline{\underline{\sf{\odot\:Assumption\:Needed\::-}}}

Let the sides of the triangle be

  • 3x

  • 5x

  • 7x

__________________________

\qquad\sf{:\implies\:3x\:+\:5x\:+\:7x\:=\:300}

\qquad\sf{:\implies\:15x\:=\:300}

\qquad\sf{:\implies\:x\:=\:\dfrac{300}{15}}

\qquad\sf{:\implies\:x\:=\:20}

\underline{\underline{\sf{\maltese\:Sides\::-}}}

\qquad\sf{:\implies\:Side\:(a)\:=3x}

\qquad\sf{:\implies\:Side\:(a)\:=3\:\times\:20}

\qquad\sf{:\implies\:Side\:(a)\:=\:60\:cm}

______________

\qquad\sf{:\implies\:Side\:(b)\:=\:5x}

\qquad\sf{:\implies\:Side\:(b)\:=\:5\:\times\:20}

\qquad\sf{:\implies\:Side\:(b)\:=\:100\:cm}

______________

\qquad\sf{:\implies\:Side\:(c)\:=\:7x}

\qquad\sf{:\implies\:Side\:(c)\:=\:7\:\times\:20}

\qquad\sf{:\implies\:Side\:(c)\:=\:140\:cm}

  • Hence the sides of the triangle are 60cm,100cm and 140cm

_____________________________________________

\bigstar Let us find out the semi-perimeter of the triangle by substituting the sides in the formula ( Semi-perimeter = a + b + c/2 )

\qquad\sf{:\implies\:Semi\:-\:perimeter\:=\:\dfrac{a\:+\:b\:+\:c}{2}}

\qquad\sf{:\implies\:Semi\:-\:perimeter\:=\:\dfrac{60\:+\:100\:+\:140}{2}}

\qquad\sf{:\implies\:Semi\:-\:perimeter\:=\:\dfrac{300}{2}}

\qquad\sf{:\implies\:Semi\:-\:perimeter\:=\:150\:cm}

  • Hence the semi-perimeter of the triangle is 150cm.

________________________________

\bigstar Let us find out the Area of the triangle by substituting the values in the formula.

\sf{:\implies\:Area\:=\:\sqrt{s\:(\:s\:-\:a\:)\:(\:s\:-\:b\:)\:(\:s\:-\:c\:)}}

  • s = semi=perimeter
  • a = length of the triangle a
  • b = length of the triangle b
  • c = length of the triangle c

\qquad\sf{:\implies\:Area\:=\:\sqrt{s\:(\:s\:-\:a\:)\:(\:s\:-\:b\:)\:(\:s\:-\:c\:)}}

\qquad\sf{:\implies\:Area\:=\:\sqrt{150\:(\:150\:-\:60\:)\:(\:150\:-\:100\:)\:(\:150\:-\:140\:)}}

\qquad\sf{:\implies\:Area\:=\:\sqrt{150\:(\:90\:)\:(\:50\:)\:(\:10\:)}}

\qquad\sf{:\implies\:Area\:=\:\sqrt{5\:\times\:3\:\times\:10\:\times\:3\:\times\:3\:\times\:10\:\times5\:\times\:10\:\times\:10}}

\qquad\sf{:\implies\:Area\:=\:100\:\times\:5\:\times\:3\sqrt{3} }

\qquad\sf{:\implies\:Area\:=\:1500\:\sqrt{3}\:cm^{2} }

  • Hence the area of the triangle is 1500√3 cm²

\underline{\underline{\sf{\maltese\:Extra\:Information\::-}}}

  • Area of triangle = √s(s - a) (s - b) (s - c) is known as herons formula .

where

  • s is semi-perimeter
  • a is the length of the triangle a
  • b is the length of the triangle b
  • c is the length of the triangle c

Attachments:
Similar questions