q. 13 find x in terms of a, b, c
Answers
Step-by-step explanation:
hope it is correct.
mark it brainlist
Answer:
x = 0 and x = (2ab - bc - ac) / (a + b - 2c)
Step-by-step explanation:
Given :
→
Cross - multiplication, we get
→ (x - c) [a(x - b) + b(x - a)] = (2c) [(x - a)(x - b)]
→ (x - c) [ax - ab + bx - ab] = (2c) [x(x - b) - a(x - b)]
→ (x - c) [ax + bx - 2ab] = (2c) [x² - bx - ax + ab]
→ x(ax + bx - 2ab) - c(ax + bx - 2ab) = 2cx² - 2bcx - 2acx + 2abc
→ ax² + bx² - 2abx - acx - bcx + 2abc = 2cx² - 2bcx - 2acx + 2abc
Cancelling out common terms, we get
→ ax² + bx² - 2abx - acx - bcx = 2cx² - 2bcx - 2acx
→ ax² + bx² - 2cx² = - 2bcx + bcx - 2acx + acx + 2abx
→ ax² + bx² - 2cx² = - bcx - acx + 2abx
→ (a + b - 2c)x² = (- bc - ac + 2ab)x
→ (a + b - 2c)x² - (- bc - ac + 2ab)x = 0
→ (x) [(a + b - 2c)x - (- bc - ac + 2ab)] = 0
→ x = 0 and [(a + b - 2c)x - (- bc - ac + 2ab)] = 0
→ x = 0 and (a + b - 2c)x = 2ab - bc - ac
→ x = 0 and x = (2ab - bc - ac) / (a + b - 2c)