Q-13 If a+b+c=9 and ab+bc+ca=40, find a2+b2+c2?
Answers
Answered by
3
Given, a + b + c = 9 and ab + bc + ca = 40
We know that,
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
⇒ a² + b² + c² = (a + b + c)² – 2 (ab + bc + ca)
⇒ a² + b² + c² = (9)² – 2 × 40 = 81 – 80 = 1 [a + b + c = 9 and ab + bc + ca = 40]
Thus, the value of a² + b² + c² is 1 .
Answered by
0
Step-by-step explanation:
Given
- a + b + c = 9
- ab + bc + ca = 40
Find
- a² + b² + c²
We know that
→ ( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
→ ( a + b + c )² - 2ab + 2bc + 2ca = a² + b² + c²
→ (9) ² - 2 ( ab + bc + ca ) = a² + b² + c²
→ 81 - 2*40 = a² + b² + c²
→ 81 - 80 = a² + b² + c²
→ a² + b² + c² = 1
Similar questions