Math, asked by mahtab7jahan, 7 months ago

Q.14
In a triangle ACB, angle C = 90 degree, if
E, D are two point on AB, AC sides
respectively. Given angle ADE = angle B
if AD = 2.7cm, AE = 2.5 cm, BE = 1.1
cm and BC = 5.2 cm, find DE.​

Answers

Answered by Anonymous
1

Step-by-step explanation:

In ΔADE and ΔABC, ∠ADE = ∠ABC (given)

∠A = ∠A (common)

ΔADE ~ ΔABC (AA similarity)

⇒\frac{AD}{AB}

AB

AD

= \frac{DE}{BC}

BC

DE

= \frac{AE}{AC}

AC

AE

[Corresponding sides of similar △'s are proportional]

⇒ \frac{AD}{AB}

AB

AD

= \frac{DE}{BC}

BC

DE

⇒ 3.83.6 + 2.1 = \frac{DE}{4.2}

4.2

DE

⇒ 3.85.7 = \frac{DE}{4.2}

4.2

DE

⇒ 23 = \frac{DE}{4.2}

4.2

DE

⇒ DE = 2.8 cm

Similar questions