Math, asked by priyaken11000, 3 months ago

Q.15 Find the slant height of a cone
having base radius 7m and height 24
m
Your answer​

Answers

Answered by Anonymous
0

Answer:

by Pythagoras theorem..

14+ 576 = 920 area.....

Answered by Anonymous
3

AnswEr:-

Slant height = 25 m.

ExplanatioN:-

\sf \blue{Given}\begin{cases}&\sf{Base\:radius\:of\:the\:cone=\bf{7\:m.}} \\ \\ &\sf{Height\:of\:the\:cone=\bf{24\:m.}}\end{cases}

To FinD:-

The slant height of the cone.

SolutioN:-

Diagram:-

\setlength{\unitlength}{1.2mm}\begin{picture}(5,5)\thicklines\put(0,0){\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\put(-0.5,-1){\line(1,2){13}}\put(25.5,-1){\line(-1,2){13}}\multiput(12.5,-1)(2,0){7}{\line(1,0){1}}\multiput(12.5,-1)(0,4){7}{\line(0,1){2}}\put(17,1.6){\bf{r=7\:m}}\put(13.5,10){\bf{h=24\:m}}\end{picture}

We know that,

\large\quad\quad\quad\:\:\;\;{\blue{\underline{\boxed{\bf{l=\sqrt{r^2+h^2}}}}}}

\sf \blue{Here}\begin{cases}&\sf{r=Base\:radius\:of\:the\:cone=\bf{7\:m}} \\ \\ &\sf{h=Height\:of\:the\:cone=\bf{24\:m}} \\ \\ &\sf{l=slant\:height\:of\:the\:cone}\end{cases}

Putting the values,

\normalsize\implies{\sf{l=\sqrt{(7)^2+(24)^2}}}

\normalsize\implies{\sf{l=\sqrt{49+576}}}

\normalsize\implies{\sf{l=\sqrt{625}}}

\normalsize\implies{\sf{l=25\:\:(\because\:25\times25=625)}}

\normalsize\quad\quad\therefore\boxed{\mathfrak{\blue{Slant\:Height=25\:m.}}}

The slant height of the cone is 25 m.

Similar questions