Math, asked by saimamuzaffar, 3 months ago

Q. (16 Find the distance between the points A (Coso, o)
and B(0, - Sino)​

Answers

Answered by Asterinn
3

\sf \large \: Distance \:  between \:  two \:  points \:  (x_1 , y_1)  \: and \: ( x_2 , y_2)  :  \\  \\ \rm \large\longrightarrow \sqrt{{ {(x_2 - x_1)}^{2} + (y_2 - y_1)}^{2} }

\rm \: Distance \:  between \:  two \:  points \:  (cos \theta,0)  \: and \: ( 0 ,  - sin\theta)  \\  \\ \rm \large\longrightarrow \sqrt{{ {(0 - cos \theta)}^{2} + (- sin\theta  - 0)}^{2} } \\   \\ \\ \rm \large\longrightarrow \sqrt{{ {( cos \theta)}^{2} + ( -  sin\theta   )}^{2} }\\   \\ \\ \rm \large\longrightarrow \sqrt{{ { cos ^{2} \theta}+ sin^{2} \theta   } }\\   \\ \\ \rm \large\longrightarrow \sqrt{{1} } = 1 \\  \\  \\  \therefore\rm \: Distance \:  between \:  two \:  points \:  (cos \theta,0)  \: and \: ( 0 ,  - sin\theta) = 1 \: unit

Answer : 1 unit

Additional Information:-

\tt \: Equation  \: of  \: line \:  passing \:  through  \: points  \: (x_1 , y_1) \:  and \:  (x_2 , y_2) :

\tt \longrightarrow y -  y_1 = x-x_1\bigg(  \dfrac{y_2-y_1}{ x_2-x_1}   \bigg )

\tt \rightarrow  \: here \: \bigg(  \dfrac{y_2-y_1}{ x_2-x_1}   \bigg ) is \: slope \: of \: line

Similar questions