Math, asked by Wantperfectanswers, 9 months ago

ᴩʟᴇᴀꜱᴇ ᴄᴀɴ ꜱᴏᴍᴇᴏɴᴇ ꜱᴏʟᴠᴇ ᴛʜɪꜱ qᴜᴇꜱᴛɪᴏɴ​​

Attachments:

Answers

Answered by RvChaudharY50
36

Qᴜᴇsᴛɪᴏɴ :- if a ≠ 0 and (a - 1/a) = 3 ; find :-

  • a² + 1/a²
  • a³ - 1/a³

Sᴏʟᴜᴛɪᴏɴ :-

→ (a - 1/a) = 3

Squaring Both sides we get,

→ (a - 1/a)² = 3²

Now using (a - b)² = a² + b² - 2ab in LHS,

→ a² + 1/a² - 2 * a * 1/a = 9

→ (a² + 1/a²) - 2 = 9

→ (a² + 1/a²) = 9 + 2

→ (a² + 1/a²) = 11 (Ans.)

______________________

Again,

→ (a - 1/a) = 3

Cubing Both sides we get,

→ (a - 1/a)³ = 3³

Now using (a - b)³ = a³ - b³ - 3ab(a - b) in LHS,

→ a³ - 1/a³ - 3 * a * 1/a(a - 1/a) = 27

→ a³ - 1/a³ - 3 * (a - 1/a) = 27

Putting value of (a - 1/a) = 3 Now,

→ a³ - 1/a³ - 3 * 3 = 27

→ a³ - 1/a³ - 9 = 27

→ (a³ - 1/a³) = 27 + 9

→ (a³ - 1/a³) = 36 (Ans.)

_______________________

Answered by Anonymous
15

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

 \star{\sf{ \green{  \:  \: a -  \frac{1}{a} = 3 \:  \:  \:  ,\: where \: a \neq 0  }}} \\ \\

{\bf{\blue{\underline{To\:Find:}}}}

 \star{\sf{ \green{  \:  \:  {a}^{2}  -  \frac{1}{ {a}^{2} } =?}}} \\

 \star{\sf{ \green{  \:  \:  {a}^{3}  -  \frac{1}{ {a}^{3} } =?}}} \\

{\bf{\blue{\underline{Now:}}}}

 : \implies{\sf{ (1). \:  {a}- \frac{1}{ {a} }=3 }} \\ \\

 :{\sf{  \: Squaring \: Both \: Side }} \\ \\

 : \implies{\sf{ \:  \bigg( {a} -  \frac{1}{ {a} } \bigg) ^{2}   =  {3}^{2} }} \\ \\

  \boxed{\sf{  {(x  -  y)}^{2} =  {x}^{2} +  {y}^{2}   - 2xy  }} \\ \\

 : \implies{\sf{ \:  \bigg( {a}^{2}+  \frac{1}{ {a}^{2} }   - 2 \times  \frac{1}{a}  \times a\bigg)   =  9}} \\ \\

 : \implies{\sf{ \:  {a}^{2} +  \frac{1}{ {a}^{2} }   - 2 \times  \frac{1}{ \cancel{a}}  \times  \cancel{a}  =  9}} \\ \\

 : \implies{\sf{ \:  { {a}^{2} } +  \frac{1}{ { {a}^{2} } }    =  9 + 2}} \\ \\

 : \implies{\sf{ \:  { {a}^{2} } +  \frac{1}{ { {a}^{2} } }    =  11}} \\ \\

___________________________________

 : \implies{\sf{ (2). \:  {a}+  \frac{1}{ {a} }=3 }} \\ \\

 :{\sf{  \: Cubing \: Both \: Side }} \\ \\

 : \implies{\sf{ \:  \bigg( {a} -  \frac{1}{ {a} } \bigg) ^{3}   =  {3}^{3} }} \\ \\

  \boxed{\sf{  {(x  -  y)}^{3} =  {x}^{3} +  {y}^{3} - 3xy(x - y)   }} \\ \\

 : \implies{\sf{ \:  \bigg( {a}^{3}-  \frac{1}{ {a}^{3} }   - 3 \times  \frac{1}{a}  \times a(a -  \frac{1}{a} )\bigg)   =  27}} \\ \\

 : \implies{\sf{ \:  \bigg( {a}^{3}- \frac{1}{ {a}^{3} }   - 3 \times  \frac{1}{ \cancel{a}}  \times  \cancel{a}(3 )\bigg)   =  27}} \\ \\

 : \implies{\sf{ \:   {a}^{3}-\frac{1}{ {a}^{3} }   - 3  \times 3   =  27}} \\ \\

 : \implies{\sf{ \:   {a}^{3}-  \frac{1}{ {a}^{3} }   - 9   =  27}} \\ \\

 : \implies{\sf{ \:   {a}^{3}-  \frac{1}{ {a}^{3} }     =  27+9}} \\ \\

 : \implies{\sf{ \:   {a}^{3}-  \frac{1}{ {a}^{3} }  =36}} \\ \\

Similar questions