Math, asked by digvijay8838, 4 months ago

Q.19. Find the positive root of
the equation x^3 + 2x^2 + 10x
20 using Regula Falsi method
and correct upto 4 decimal
places.​

Answers

Answered by hukam0685
3

Step-by-step explanation:

Given:x³+2x²+10x-20=0

To find: find the real root correct to three significant figure by regula falsi method.

Solution:

Formula:

\boxed{\bold{x =  \frac{bf(a) - af(b)}{f(a) - f(b)}} } \\

Step 1:Find a and b,put x=1

f(1) =  {(1)}^{3}  + 2( {1)}^{2}  + 10(1) - 20 \\  \\ f(1) = 1 + 2 + 10 - 20 \\  \\ \bold{\red{f(1) =  - 7}} \\  \\

Thus,

a=1 and f(a)= -7

put x=2

f(2) =  {(2)}^{3}  + 2( {2)}^{2}  + 10(2) - 20 \\  \\ f(2) = 8 + 8 + 20 - 20 \\  \\ \bold{\green{f(2) =  16}} \\  \\

Thus,

b=2 and f(b)=16

There is a real root between x=1 and 2.

Step 2: Find next a,by putting value in formula

 x_1 =  \frac{2( - 7) - 1(16)}{( - 7) - (16)}  \\ \\ x_1 =  \frac{ - 14 - 16}{ - 7 - 16}  \\  \\ x_1 =  \frac{ - 30}{ - 23}  \\  \\ \bold{\pink{x_1 = 1.3043}}\\

find the value of f(1.3043)

f(1.3043) =  {(1.3043)}^{3}  + 2( {1.3043)}^{2}  + 10(1.3043) - 20 \\  \\ \bold{\pink{f(1.3043) = - 1.3357}} \\  \\

Step 3:For next iteration a=1.3043 and f(a)=-1.3357

x_2 =  \frac{2( - 1.3357) - 1.3043(16)}{  - 1.3357- (16)}  \\  \\ x_2 =  \frac{ - 2.6714- 20.8688}{ - 17.3357}  \\  \\ x_2 =   \frac{-23.5402}{ - 17.3357} \\  \\ \bold{\green{x_2 = 1.3579}}\\

f(1.3579) =  {(1.3579)}^{3}  + 2( {1.3579)}^{2}  + 10(1.3579) - 20 \\  \\ f(1.3579) = 2.5038 + 3.6877 + 13.579 - 20  \\ \\ \bold{\green{f(1.3579) = - 0.2295}}  \\  \\

Step 4: For next iteration a=1.3579 and f(a)=-0.2295

x_3=  \frac{2( - 0.2295) - 1.3579(16)}{ - 0.2295 - 16}  \\  \\ x_3 =  \frac{ - 22.1854}{ - 16.2295}  \\  \\ \bold{\purple{x_3 = 1.366}} \\

Find f(1.366)

f(1.3669) =  {(1.3669)}^{3}  + 2( {1.3669)}^{2}  + 10(1.3669) - 20 \\  \\ \bold{\purple{f(1.3669) = - 0.0402}} \\

Step 5: For next iteration a=1.3669 and f(a)=-0.0402

x_4=  \frac{2( - 0.0402) - 1.3669(16)}{ - 0.0402 - 16}  \\  \\ x_4 =  \frac{ - 21.9508}{ - 16.0402}  \\  \\ \bold{\red{x_4= 1.3684}} \\

*These steps can be iterate more to find more accurate root.

The real root exists more accurately at 1.3688

Final answer:

Real root of x³+2x²+10x-20=0 is approx 1.3688 upto 4 significant digits.

Hope it helps you.

To learn more on brainly:

Find the real root of the equation x³ -9x+1=0 by using regula falsi method.

https://brainly.in/question/2930619

Similar questions