Math, asked by jadhavsavita480, 2 months ago

Q. 2
1) Find the value of cos 15°​

Answers

Answered by nitusinghmanoj
0

Answer:

ANSWER IS COS 15 = √3+1/2√2

Answered by AbhinavRocks10
2

Step-by-step explanation:

\cos 15=\dfrac{{\sqrt{3}+1}}{2\sqrt{2}}

Step-by-step explanation:

We have,

\cos 30=2\cos^2 15-1cos30=2cos

\rm To \:find, \:the \:value \:of \:\cos 15cos15 = ?

\cos 30=2\cos^2 15-1cos30=2cos

⇒ 2\cos^2 15=\cos 30+12cos

⇒ 2\cos^2 15=\dfrac{\sqrt{3}}{2}+12cos

We know that,

✵\cos 30=\dfrac{\sqrt{3}}{2}

⇒ 2\cos^2 15=\dfrac{\sqrt{3}+2}{2}2cos

⇒ \cos^2 15=\dfrac{\sqrt{3}+2}{4}

⇒ \cos 15=\sqrt{\dfrac{\sqrt{3}+2}{4}}

⇒ \cos 15=\dfrac{\sqrt{\sqrt{3}+2}}{2}cos15

⇒ \cos 15=\dfrac{{\sqrt{3}+1}}{2\sqrt{2}}cos15

➪∴ The \:value \:of \cos\: 15=\dfrac{{\sqrt{3}+1}}{2\sqrt{2}}

\sf Thus, \:the \:value \:of \cos 15\:cos\:15 \:is\: equal \:to \dfrac{{\sqrt{3}+1}}{2\sqrt{2}}

Similar questions