Math, asked by 7999605853ayshakhan, 4 months ago

Q.2 Fill in the blanks
(1) if radius and height of cone is 1,2 then volume of cone​

Answers

Answered by Ladylaurel
6

Answer :-

  • The Volume of cone is 2.095 cubic units.

Step-by-step explanation :

To Find :-

  • The volume of cone

Solution :-

Given that,

  • Radius of cone = 1 units
  • Height of cone = 2 units

Therefore,

As we know that,

 \underline{ \boxed{\bf{Volume \: of \: cone = \dfrac{1}{3} \: \pi \: {r}^{2}h}}}

According the question,

\sf{ \longmapsto \: \dfrac{1}{3} \: \pi \: {r}^{2}h} \\  \\  \\ \sf{ \longmapsto \: \dfrac{1}{3} \times \pi \times {r}^{2} \times h} \\  \\  \\ \sf{ \longmapsto \: \dfrac{1}{3} \times \dfrac{22}{7} \times {(1)}^{2} \times 2} \\  \\  \\ \sf{ \longmapsto \: \dfrac{1}{3} \times \dfrac{22}{7} \times 1 \times 1 \times 2} \\  \\  \\ \sf{ \longmapsto \: \dfrac{1}{3} \times \dfrac{22 \times 1 \times 1 \times 2}{7}} \\  \\  \\  \sf{ \longmapsto \: \dfrac{1}{3} \times \dfrac{22 \times 2}{7}} \\  \\  \\ \sf{ \longmapsto \: \dfrac{1}{3} \times \dfrac{44}{7}} \\  \\  \\ \sf{ \longmapsto \: \dfrac{44}{7 \times 3}} \\  \\  \\ \sf{ \longmapsto \: \dfrac{44}{21}} \\  \\  \\ \sf{ \longmapsto \:  \cancel{\dfrac{44}{21}}} \\  \\  \\ \bf{ \longmapsto \: 2.095 \approx}

  • The Volume of cone is 2.095 cubic units.
Similar questions