Math, asked by chitra52832, 4 months ago

Q.2. Prove the following:-
( sec tetha + tan theta ) (1-sin theta) = cos theta​

Answers

Answered by mathdude500
2

Given Question :-

\tt \:  Prove \:  that \: (sec \theta + tan \theta)(1 - sin \theta) = cos \theta

─━─━─━─━─━─━─━─━─━─━─━─━─

Identities used :-

\tt \:  ⟼1. \: sec \theta = \dfrac{1}{cos \theta}

\tt \:  ⟼2. \: tan \theta = \dfrac{sin \theta}{cos \theta}

\tt \:  ⟼3. \: 1 -  {sin}^{2}  \theta =  {cos}^{2}  \theta

─━─━─━─━─━─━─━─━─━─━─━─━─

Solution:-

Consider LHS:-

\tt \:  ⟼\: (sec \theta + tan \theta)(1 - sin \theta)

\tt \:  ⟼ \:  =  \:  \bigg(\dfrac{1}{cos \theta}  + \dfrac{sin \theta}{cos \theta} \bigg )(1 - sin \theta)

\tt \:  ⟼ \:  =  \:  \bigg(\dfrac{1 + sin \theta}{cos \theta} \bigg) (1 - sin \theta)

\tt \:  ⟼ =  \: \dfrac{1 -  {sin}^{2} \theta }{cos \theta}

\tt \:  ⟼ =  \: \dfrac{{cos}^{2} \theta }{cos \theta}

\tt \:  ⟼ =  \: cos \theta

─━─━─━─━─━─━─━─━─━─━─━─━─

\large \red{\tt \:  ⟼  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Explore  \: more } ✍

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions