Q.21: If the median of the following frequency distribution is 525 in the table given below, find the value
of x and y, if total frequency is 100.
Variable
0-100
100-
200
5
200-
300
Х
300-
400
12
400-
500
17
500-
600
20
600-
700
Y
700-
800
9
800-
900
7.
900-
1000
4
Frequency 2
Answers
Answered by
1
Answer:
bhai mer ko ya question samaj nhi aa raha ha plz aiki photo bajo ok
Answered by
2
Answer:
Correct option is
D
x=9 y=15
Computation of Median
Class interval Frequency (f) Cumulative frequency (cf)
0-100 2 2
100-200 5 7
200-300 x 7+x
300-400 12 19+x
400-500 17 36+x
500-600 20 56+x
600-700 y 56+x+y
700-800 9 65+x+y
800-900 7 72+x + y
900-1000 4 76+x + y
Total = 100
We have,
N=∑f
i
=100
⇒76+x+y=100⇒x+y=24
It is given that the median is 525. Clearly, it lies in the class 500−600
∴l=500,h=100,f=20,F=36+x and N=100
Now,
Median=i+
f
2
N
−F
×h
⇒525=500+
20
50−(36+x)
×100
⇒525−500=(14−x)×5
⇒25=70−5x⇒5x=45⇒x=9
Putting x=9 inx+y=24, we get y=15.
Hence, x=9and y=15.
Similar questions