Q 21. The internal and external diameter of a hollow hemispherical vessel are
21 cm and 28 cm respectively Find:
(i) Internal curved surface area
(ii) External curved surface area
(iii) Total surface area
(iv) Volume of material of the vessel
Answers
⭐ The Internal and External diameter of a hollow hemispherical vessel are
21 cm and 28 cm respectively. Find :
- Internal curved surface area
- External curved surface area
- Total Surface Area
- Volume of material of the vessel
- The Internal Diameter of Hollow Hemispherical Vessel = 21 cm
- The External Diameter of Hollow Hemispherical Vessel = 28 cm
- Internal curved surface area
- External curved surface area
- Total Surface Area
- Volume of material of the vessel
- Internal Curved Surface Area = 693 cm²
- External Curved Surface Area = 1232 cm²
- Total Surface Area = 2194.5 cm²
- Volume of material of the vessel = 3323.83 cm³
We need to know about some basic terms before going to Calculations
- Diameter : The center of a circle is the midpoint of its diameter, It divides the circle into two equal parts
- Radius : The distance from the center to the circumference of a circle
Also :
- Diameter = 2 × Radius
- Radius = Diameter/2
_______________________________________________________
Internal Curved Surface Area = 2πr²
⇒ Internal Curved Surface Area = 2 × π × r²
Since Radius = diameter/2
⇒ Internal Curved Surface Area = 2 × π × (diameter/2)²
⇒ Internal Curved Surface Area = 2 × π × (21 cm/2)²
⇒ Internal Curved Surface Area = 2 × π × (21²/2²) cm²
⇒ Internal Curved Surface Area = 2 × π × ((21 × 21)/(2 × 2)) cm²
We Know π = 22/7
⇒ Internal Curved Surface Area = 2 × 22/7 × ((21 × 21)/(2 × 2)) cm²
⇒ Internal Curved Surface Area = 2 × 22/1 × ((3 × 21)/(2 × 2)) cm²
⇒ Internal Curved Surface Area = 2 × 22/1 × (63/4) cm²
⇒ Internal Curved Surface Area = (2 × 22)/1 × (63/4) cm²
⇒ Internal Curved Surface Area = 44/1 × (63/4) cm²
⇒ Internal Curved Surface Area = 44 × 63/4 cm²
⇒ Internal Curved Surface Area = 11 × 63/1 cm²
⇒ Internal Curved Surface Area = 693 cm²
_______________________________________________________
External Curved Surface Area = 2πR²
⇒ External Curved Surface Area = 2 × π × R²
Since Radius = Diameter/2
⇒ External Curved Surface Area = 2 × π × (Diameter/2)²
⇒ External Curved Surface Area = 2 × π × (28 cm/2)²
⇒ External Curved Surface Area = 2 × π × (28²/2²) cm²
⇒ External Curved Surface Area = 2 × π × ((28 × 28)/(2 × 2)) cm²
We Know π = 22/7
⇒ External Curved Surface Area = 2 × 22/7 × ((28 × 28)/(2 × 2)) cm²
⇒ External Curved Surface Area = 2 × 22/1 × ((4 × 28)/(2 × 2)) cm²
⇒ External Curved Surface Area = 2 × 22/1 × (112/4) cm²
⇒ External Curved Surface Area = 2 × 22 × (112/4) cm²
⇒ External Curved Surface Area = 44 × (112/4) cm²
⇒ External Curved Surface Area = 11 × (112/1) cm²
⇒ External Curved Surface Area = 11 × 112 cm²
⇒ External Curved Surface Area = 1232 cm²
_______________________________________________________
Total Surface Area
= External Curved Surface Area + Internal Curved Surface Area + π(R² - r²)
⇒ Total Surface Area = 693 cm² + 1232 cm² + π(R² - r²)
⇒ Total Surface Area = 1925 cm² + π(R² - r²)
We Know π = 22/7
⇒ Total Surface Area = 1925 cm² + 22/7(R² - r²)
Since Radius = Diameter/2
⇒ Total Surface Area = 1925 cm² + 22/7((Diameter/2)² - (diameter/2)²)
⇒ Total Surface Area = 1925 cm² + 22/7((28 cm/2)² - (21 cm/2)²)
⇒ Total Surface Area = 1925 cm² + 22/7((14 cm)² - (441 /4) cm²)
⇒ Total Surface Area = 1925 cm² + 22/7(196 cm² - 110.25 cm²)
⇒ Total Surface Area = 1925 cm² + 22/7(85.75 cm²)
⇒ Total Surface Area = 1925 cm² + (22 × 85.75)/7 cm²
⇒ Total Surface Area = 1925 cm² + 1886.5/7 cm²
⇒ Total Surface Area = 1925 cm² + 269.5 cm²
⇒ Total Surface Area = 2194.5 cm²
_______________________________________________________
Volume of material of the vessel = 2/3π(R³ - r³)
⇒ Volume of material of the vessel = 2/3 × π × (R³ - r³)
We Know π = 22/7
⇒ Volume of material of the vessel = 2/3 × 22/7 × (R³ - r³)
⇒ Volume of material of the vessel = 44/21 × (R³ - r³)
Since Radius = Diameter/2
⇒ Volume of material of the vessel = 44/21 × ((Diameter/2)³ - (diameter/2)³)
⇒ Volume of material of the vessel = 44/21 × ((28 cm/2)³ - (21 cm/2)³)
⇒ Volume of material of the vessel = 44/21 × ((14 cm)³ - (21/2)³ cm³)
⇒ Volume of material of the vessel = 44/21 × ((14 cm)³ - (9261/8) cm³)
⇒ Volume of material of the vessel = 44/21 × (2744 cm³ - (9261/8) cm³)
⇒ Volume of material of the vessel = 44/21 × (2744 cm³ - 1157.625 cm³)
⇒ Volume of material of the vessel = 44/21 × (1586.375 cm³)
⇒ Volume of material of the vessel = 44/21 × (1586.375) cm³
⇒ Volume of material of the vessel = (44 × 1586.375)/21 cm³
⇒ Volume of material of the vessel = 69800.5/21 cm³
⇒ Volume of material of the vessel = 3323.83 cm³
_______________________________________________________
Request :
If there is any difficulty viewing this answer in app, Kindly see this answer at Web (https://brainly.in/) for clear steps and understanding .
See the answer at :
https://brainly.in/question/31146091