Math, asked by tathesubhash970, 10 months ago

Q.22. Expand (2x - 1/x)^6​

Answers

Answered by Moharis287
0

And: (

2

x

1

x

)

6

Use the binomial expansion theorem to find each term. The binomial theorem states

(

a

+

b

)

n

=

n

k

=

0

n

C

k

(

a

n

k

b

k

)

.

6

k

=

0

6

!

(

6

k

)

!

k

!

(

2

x

)

6

k

(

1

x

)

k

Expand the summation.

6

!

(

6

0

)

!

0

!

(

2

x

)

6

0

(

1

x

)

0

+

6

!

(

6

1

)

!

1

!

(

2

x

)

6

1

(

1

x

)

+

+

6

!

(

6

6

)

!

6

!

(

2

x

)

6

6

(

1

x

)

6

Simplify the exponents for each term of the expansion.

1

(

2

x

)

6

(

1

x

)

0

+

6

(

2

x

)

5

(

1

x

)

+

+

1

(

2

x

)

0

(

1

x

)

6

Simplify the polynomial result.

64

x

6

192

x

4

+

240

x

2

160

+

60

x

2

12

x

4

+

1

x

6

Answered by 10MAK01
1

Answer:

Step-by-step explanation:

(a+b)^6 = 6C0 (a^6).(b^0) + 6C1 (a^5).(b^1) + 6C2 (a^4).(b^2) + 6C3 (a^3).(b^3) + 6C4 (a^2).(b^4) + 6C5 (a^1).(b^5) + 6C6 (a^0).(b^6)

(2x - 1/x)^6 = [(2x)^6] + [6 . (2x)^5 . (1/x)] + [15 . (2x)^4 . (1/x)^2] + [20 . (2x)^3 . (1/x)^3] + [15 . (2x)^2 . (1/x)^4] + [6 . (2x) . (1/x)^5] + [(1/x)^6]

Hope this helps you...

Similar questions