Math, asked by akori0081gmailcom, 3 days ago

Q.22. Find the area enclosed by the ellipse x²/16+y²/9=1 ?​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given curve is

\rm \: \dfrac{ {x}^{2} }{16}  + \dfrac{ {y}^{2} }{9}  = 1 \\

Its an equation of ellipse having centre (0, 0) and intersects the x - axis at (4, 0) and (- 4, 0) and intersects the y - axis at (0, 3) and (0, - 3)

Also, Ellipse is symmetrical in all the four quadrants.

\rm \: \dfrac{ {y}^{2} }{9}  = 1 - \dfrac{ {x}^{2} }{16}  \\

\rm \: \dfrac{ {y}^{2} }{9}  =  \dfrac{16 -  {x}^{2} }{16}  \\

\rm \:  {y}^{2}   =  9\bigg(\dfrac{16 -  {x}^{2} }{16}\bigg)  \\

\rm\implies \:y = \dfrac{3}{4} \sqrt{16 -  {x}^{2} }  \\

So, required area is 4 times the area bounded by ellipse in first quadrant with respect to x - axis between the lines x = 0 and x = 4.

\rm \: Area = 4 \times \displaystyle\int_{0}^{4}\rm \: ydx \\

\rm \:  = 4 \times  \dfrac{3}{4} \displaystyle\int_{0}^{4}\rm \sqrt{16 -  {x}^{2} } \: dx

\rm \:  = 3 \times \displaystyle\int_{0}^{4}\rm \sqrt{ {4}^{2}  -  {x}^{2} } \: dx

\rm \:  = 3\bigg( \frac{x}{2} \sqrt{ {4}^{2}  -  {x}^{2} }  +  \frac{ {4}^{2} }{2} {sin}^{ - 1} \frac{x}{4}  \bigg)_{0}^{4} \\

\rm \:  = 3\bigg( 0  +  \frac{ {4}^{2} }{2} {sin}^{ - 1} \frac{4}{4}  - 0 - 0 \bigg) \\

\rm \:  = 3\bigg( 8 {sin}^{ - 1}1  \bigg) \\

\rm \:  = 24 \times \dfrac{\pi}{2}  \\

\rm \:  = 12\pi \: square \: units  \\

Hence,

\rm\implies \:\boxed{ \rm{ \:Area\bf \:  = 12\pi \: square \: units  \:  \: }} \\

\rule{190pt}{2pt}

Short Cut Trick :-

\boxed{ \rm{ \:Area \: bounded \: by \: ellipse \:  \frac{ {x}^{2} }{ {a}^{2} } +  \frac{ {y}^{2} }{ {b}^{2} } = 1 \: is \: \pi \: ab \: sq. \: units \: }} \\

Formula Used :-

\boxed{ \rm{\int \sqrt{ {a}^{2}-{x}^{2}}dx=\frac{x}{2} \sqrt{ {a}^{2}-{x}^{2} }+\frac{ {a}^{2}}{2}{sin}^{-1} \frac{x}{a}+c}} \\

Attachments:
Similar questions