Math, asked by ishansiddiqui866, 6 hours ago

Q. 23 : If f is an invertible function defined as f(x) = 3x-45, then f^(x) is​

Answers

Answered by pkmkb93000
1

 \bold{let,f(x)=y= \frac{3x - 4}{5}}

 \bold{So, to \:  find \:  inverse \:  of  \: f(x) we }

 \bold{need x in \:  terms \:  of \:  y  \: which \:  is \:  {f}^{ - 1} (x)}

  \bold{\therefore{y= \frac{3x - 4}{5}} }

⇒5y=3x−4

⇒5y+4=3x

   \bold{\implies \bold{{(x)= \frac{5y  +  4}{3}} }}

   \bold{\therefore  {f}^{ - 1} \bold{{(y)= \frac{5y  +  4}{3}} }}

 {  \bold{\therefore  {f}^{ - 1} \bold{{(x)= \frac{5x +  4}{3}} }}{  \bold{(replacing \:  y \:  with  \: x}}})

Similar questions