Math, asked by pritirwelekar, 4 months ago

Q.24] Use suitable identity to find the product of (x+4) (x+10)​

Answers

Answered by ItzDαrkHσrsє
2

Given:

  • \mathtt{(x + 4) \: (x + 10)}

To Find:

  • \mathtt{Product \: of \: (x + 4) \: (x + 10)}

Identity Used:

  • \mathtt{(x + a) \: (x + b) =  {x}^{2}  + (a + b) \: x + ab}

Solution:

Here,

  • \mathtt{a = 4}

  • \mathtt{b = 10}

\sf\underline{\bigstar\:According \: to \: question \: now \::} \\  \\ :\implies\mathrm{x(x + 10) + 4(x + 10)} \\  \\ :\implies\mathrm{ {x}^{2}  + 10x + 4x + 40} \\  \\ :\implies{\underline{\boxed{\rm{ {x}^{2}  + 14x + 40}}}}

Thus,

\therefore\;{\underline{\sf{Product\;of\;identity\;is \:  \bf{30\;cm}.}}}

Answered by Rubellite
15

\large{\underline{\underline{\sf{Step\:by\:step\:explanation:}}}}

Here we are asked to find the product of (x+4)(x+10) by using suitable identity.

To do so, we have to use this algebraic identity

:\implies{\boxed{\tt{(x+a)(x+b)=\:x^{2}+(a+b)x +ab}}}

_______

  • Here, a = 4 and b = 10

:\implies{\sf{x^{2}+(4+10)x+4\times10}}

:\implies{\sf{x^{2}+(14)x+40}}

:\large\implies{\boxed{\sf{\red{x^{2}+14x+40}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions