Math, asked by aayushishirole, 10 months ago

Q 25/30 abc and cba are, respectively, the base nine and base seven numerals
for the same positive integer. Find the sum of digits of this integer when
expressed in base ten.​

Answers

Answered by amitnrw
0

Given :  (ABC) and (CBA) are, respectively, the base nine and base seven numerals for the same positive integer  

To find :  sum of digits of this integer when expressed in base ten

Solution:

ABC    is base  9  

CBA  is base  7

Let say  N₁₀ = (ABC)₉  = (CBA)₇

N₁₀ = (ABC)₉

= 9²*A + 9¹*B + 9⁰*C

= 81A + 9B + C

N₁₀ =   (CBA)₇

 = 7²*C + 7¹*B + 7⁰*A

= 49C + 7B + A

81A + 9B + C = 49C + 7B + A  

=> 2B = 48C - 80A

=> B = 24C  - 40A

=> B = 8(3C  - 5A)

A, B & C are in base 7

hence A , B , C <  7

B = 8(3C  - 5A)   < 7

=> B = 0  

=> 3C  - 5A = 0

=> C = 5  , A  =  3

A = 3  , B = 0  C  = 5

(305)₉  = (503)₇

N₁₀   = 81A + 9B + C  = 81*3 + 0 + 5  = 248

or N₁₀   = 49C + 7B + A  = 49*5 + 0 + 3 =  248

(305)₉  = (503)₇  = (248)₁₀

sum of digits of this integer when expressed in base ten.

(248)₁₀

= 2 + 4 + 8

= 16

16 is the Sum of digits of this integer when expressed in base ten.

Learn more:

Convert the following numbers from binary 2 to base 10: 1. 11 = 2 ...

https://brainly.in/question/18156317

(11011)^2 =(______)^10 then number in the blank space is

https://brainly.in/question/11048735

13. Let s be the sum of the digits of the number15^2×5^18 in base ...

https://brainly.in/question/13077838

Similar questions