Math, asked by mohitagahlot5537, 10 months ago

Q.27 The sum of the digits of a two digit number is 14. If the number formed by
reversing the digits is less than the original number by 18. Find the original
numbers.
orator than 5. If

Answers

Answered by gangulisujata123
5

Answer:

Step-by-step explanation:

a+b=14------1     10b+a=(10a+b)-18

                         18=9a-9b

                          2=a-b -----------2

therefore,

a+b=14      8+b=14    b=6

a-b=2

2a=16

a=8        

               

Answered by Anonymous
14

Your Answer:

Given:-

  • The sum of the digits of a two digit number is 14
  • The number formed by reversing the digits is less than the original number by 18.

To Find:-

  • The original number.

Solution:-

Let the number at unit digit be y and at the tens place be x

ATQ,

\tt x+y=14\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow(1)\\\\and\\\\10x+y=10y+x+18\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow(2)

\tt Solving\:\:equation\:\:2\\\\ 10x+y=10y+x+18\\\\\Rightarrow 9x-9y=18\\\\\Rightarrow9(x-y)=18\\\\\Rightarrow x-y=2\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow(3)

Solving equation 1 and 3 we get

x = 8

y = 6

So, the number is

\blue \tt 10x+y \\\\=10(8)+6\\\\=80+6\\\\=86

Similar questions