Math, asked by paspas143, 7 months ago

Q.28: Rationalise the denominators of the following:

(i)1/√7

(ii)1/(√5+√2)

(iii)5/(√3-√5)​

Answers

Answered by sethrollins13
10

Given :

  • 1/√7
  • 1/(√5+√2)
  • 5/(√3-√5)

To Find :

  • Rationalise the denominators .

Solution :

1. 1 / 7 :

\longmapsto\tt{\dfrac{1}{\sqrt{7}}\times\dfrac{\sqrt{7}}{\sqrt{7}}}

\longmapsto\tt\bf{\dfrac{\sqrt{7}}{7}}

_______________________

2. 1 / (5+2) :

\longmapsto\tt{\dfrac{1}{\sqrt{5}-\sqrt{2}}\times\dfrac{\sqrt{5}+\sqrt{2}}{\sqrt{5}+\sqrt{2}}}

\longmapsto\tt{\dfrac{\sqrt{5}-\sqrt{2}}{(\sqrt{5}+\sqrt{2)}\:(\sqrt{5}-\sqrt{2)}}}

Using Identity : (a+b) (a-b) = a² - b²

\longmapsto\tt{\dfrac{\sqrt{5}-\sqrt{2}}{\sqrt{(5)}^{2}-\sqrt{(2)}^{2}}}

\longmapsto\tt{\dfrac{\sqrt{5}-\sqrt{2}}{5-2}}

\longmapsto\tt\bf{\dfrac{\sqrt{5}-\sqrt{2}}{3}}

_______________________

3. 5 / 3 - 5 :

\longmapsto\tt{\dfrac{5}{\sqrt{3}-\sqrt{5}}\times\dfrac{\sqrt{3}+\sqrt{5}}{\sqrt{3}+\sqrt{5}}}

Using Identity : (a+b) (a-b) = a² - b²

\longmapsto\tt{\dfrac{5\sqrt{3}+\sqrt{5)}}{\sqrt{(3)}^{2}-\sqrt{(5)}^{2}}}

\longmapsto\tt{\dfrac{5\sqrt{(3}+\sqrt{5)}}{3-5}}

\longmapsto\tt\bf{\dfrac{5\sqrt{(3}+\sqrt{5)}}{-2}}

\longmapsto\tt\bf{\dfrac{-5\sqrt{(3}+\sqrt{5)}}{2}}

Answered by Anonymous
109

\Large \dag\underline{\underline{ \green{\sf Given:}}}\dag

\red{\sf \dfrac{1}{\sqrt{7}}}

\red{\sf \dfrac{1}{\sqrt{5}+\sqrt{2}}}

\red{\sf \dfrac{5}{\sqrt{3}-\sqrt{5}}}

\Large \dag\underline{\underline{ \green{\sf Find:}}}\dag

\purple{\sf Rationalise \: the \: denominator}

\Large \dag\underline{\underline{ \green{\sf Solution:}}}\dag

 \to \pink{\sf  \dfrac{1}{ \sqrt{7} } }

 \to \pink{\sf  \dfrac{1}{ \sqrt{7}} \times  \dfrac{ \sqrt{7} }{ \sqrt{7} } }

 \to \pink{\sf \dfrac{ \sqrt{7} }{ {(\sqrt{7})}^{2}  } }

 \to \pink{\sf \dfrac{ \sqrt{7} }{7} }

____________________

 \to \blue{\sf  \dfrac{1}{ \sqrt{5} +  \sqrt{2} } }

 \to \blue{\sf  \dfrac{1}{ \sqrt{5} +  \sqrt{2} } \times  \dfrac{ \sqrt{5} -  \sqrt{2} }{ \sqrt{5} -  \sqrt{2} } }

 \to\blue{\sf \dfrac{ \sqrt{5} -  \sqrt{2} }{ {(\sqrt{5})}^{2}  -  {(\sqrt{2})}^{2}  } }  \\ \bigg [ \sf (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \bigg ]

 \to\blue{\sf \dfrac{ \sqrt{5} -  \sqrt{2} }{ 5 -  2} }

 \to\blue{\sf \dfrac{ \sqrt{5} -  \sqrt{2} }{ 3} }

____________________

 \to\orange{\sf \dfrac{5}{\sqrt{3}-\sqrt{5}}}

 \to\orange{\sf \dfrac{5}{\sqrt{3}-\sqrt{5}} \times  \dfrac{ \sqrt{3} + \sqrt{5}}{ \sqrt{3} + \sqrt{5}}  }

 \to\orange{\sf \dfrac{ 5\sqrt{3}  +  5\sqrt{5} }{ {(\sqrt{3})}^{2}  -  {(\sqrt{5})}^{2}  } }  \\ \bigg [ \sf (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \bigg ]

 \to\orange{\sf \dfrac{ 5\sqrt{3}  +  5\sqrt{5} }{ 3  -  5} }

 \to\orange{\sf \dfrac{ 5\sqrt{3}  +  5\sqrt{5} }{ - 2} }

 \to\orange{\sf \dfrac{ 5(\sqrt{3}  +  \sqrt{5})}{ - 2} }

 \to\orange{\sf \dfrac{ - 5(\sqrt{3}  +  \sqrt{5})}{2} }

Similar questions