Math, asked by rkpatial19, 3 months ago

Q. 29 solve the question ​

Attachments:

Answers

Answered by Anonymous
17

Given

  • Using identities evaluate: (197 × 203)

Explanation:

 \colon\implies{\sf{ 197 \times 203 }} \\ \\ \\ \colon\implies{\sf{ (200-3) (200+3) }} \\

We can Use Identity as:-

Let a be 200 and b be 3

Then,

 \maltese \ {\pink{\large{\pmb{\boxed{\sf{ (a-b)(a+b) = a^2 - b^2 }}}}}} \\ \\ \\ \colon\implies{\sf{ (200-3) (200+3) = (200)^2 - (3)^2 }} \\ \\ \\ \colon\implies{\sf{ (200)^2 - (3)^2 = 40000 - 9 }} \\ \\ \\ \colon\implies{\sf\large\green{ 39991 }} \\

Hence,

  • The Value of the 197 × 203 = 39,991 .

 \\

More to Know

 \maltese \ {\large{\pmb{\boxed{\sf{ (a+b)^2=a^2+b^2+2ab }}}}}  \\ \\ \maltese \ {\large{\pmb{\boxed{\sf{ (a-b)^2=a^2+b^2-2ab }}}}} \\ \\ \maltese \ {\large{\pmb{\boxed{\sf{ (a+b)^3=a^3+b^3+3ab(a+b) }}}}} \\ \\ \maltese \ {\large{\pmb{\boxed{\sf{ (a-b)^3=a^3-b^3-3ab(a-b) }}}}} \\ \\ \maltese \ {\large{\pmb{\boxed{\sf{ a^3+b^3 =(a+b)(a^2+b^2-ab) }}}}} \\ \\ \maltese \ {\large{\pmb{\boxed{\sf{ a^3-b^3 =(a-b)(a^2+b^2+ab) }}}}} \\

Similar questions