Math, asked by pubgqueen, 6 months ago

ꜱᴏʟᴠᴇ ᴛʜᴇ ꜱʏꜱᴛᴇᴍ ᴏꜰ ᴇQᴜᴀᴛɪᴏɴꜱ.

3(ᴀ+3ʙ)=11ᴀʙ, 3(2ᴀ+ʙ)=7ᴀʙ

ᴅᴏɴᴛ ꜱᴘᴀᴍ❌️​

Answers

Answered by EishanKhandait
2

Answer:

A=1

B=3/2

Step-by-step explanation:

Hope it helps you

Attachments:
Answered by suraj5070
145

 \huge {\boxed {\mathbb {QUESTION}}}

ꜱᴏʟᴠᴇ ᴛʜᴇ ꜱʏꜱᴛᴇᴍ ᴏꜰ ᴇQᴜᴀᴛɪᴏɴꜱ.

3(ᴀ+3ʙ)=11ᴀʙ, 3(2ᴀ+ʙ)=7ᴀʙ

 \huge {\boxed {\mathbb {ANSWER}}}

 3(A+3B)=11AB

\implies{\boxed {3A+9B=11AB}}

 3(2A+B)=7AB

\implies{\boxed {6A+3B=7AB}}

 Divide \:all \:variables \:by\: AB

\implies \frac{3\cancel {A}}{\cancel {A} B} +\frac{9\cancel {B}}{A\cancel {B}}=\frac{11\cancel {AB}}{\cancel {AB}}

\implies \frac{3}{B}+\frac{9}{A}=11

 \implies{\boxed {3\times(\frac{1}{B})+9\times (\frac{1}{A})=11}}

\implies \frac{6\cancel {A}}{\cancel {A} B} +\frac{3\cancel {B}}{A\cancel {B}}=\frac{7\cancel {AB}}{\cancel {AB}}

\implies \frac{6}{B}+\frac{3}{A}=7

 \implies{\boxed {6\times(\frac{1}{B})+3\times (\frac{1}{A})=7}}

 Let\:\frac{1}{B}\:be\:x\\and\:\frac{1}{A}\:be\:y

 \implies{\boxed {3x+9y=11}}--(1)

 \implies{\boxed {6x+3y=7}}--(2)

 Multiply \:equation \:(1) \:with\:6

 Multiply \:equation \:(2) \:with\:3

 \implies 6(3x+9y=11)\\ \implies{\boxed {18x+54y=66}}--(3) \\ \implies 3(6x+3y=7) \\ \implies {\boxed {18x+9y=21}}--(4)

 Substract\: equation\: (3)\: from\: equation\: (4)\:

 \cancel {18x} +54y=66\\ \cancel {-18x} -9y=-21

_______________

 45y=45

 \implies y=\cancel\frac{45}{45}

 \implies{\boxed {\boxed {y=1}}}

 Substitute\:the\:value\:of\:y\:in\:equation \:(1)

\implies 3x+9(1)=11

 \implies 3x+9=11

 \implies 3x=11-9

 \implies 3x=2

 \implies{\boxed {\boxed {x=\frac{2}{3}}}}

 \implies y=\frac{1}{A}

\implies 1=\frac{1}{A}

 \therefore\implies {\boxed {\boxed {\boxed {\boxed {A=1}}}}}

 \implies x=\frac{1}{A}

\implies \frac{2}{3}=\frac{1}{B}

 \therefore\implies {\boxed {\boxed {\boxed {\boxed {B=\frac{3}{2}}}}}}

 \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

__________________________________________

 \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 Elimination\:method

  •  Elimination\: method \:you\:either \: add\: or\\ subtract\: the\: equations\: to\: get\: an \:equation \:in\\ one\: variable.
  •  When\: the\: coefficients\: of \:one\: variable\\ are\: opposites\: you\: add\: the\: equations\\ to \:eliminate\: a\: variable\: and\: when\: the\\ coefficients\: of\: one\: variable\: are\: equal\\ you\: subtract\: the\: equations\: to \:eliminate\: a\\ variable.

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Similar questions