Q (3). A mass m is suspended from a spring system shown below. Obtain an equivalent spring mass system
with single spring and mass. Given that k2 = k3= 250 N/m and Ki = 500 N/m.
WHO
Answers
sorry
m dt
m dt 2
m dt 2
m dt 2 d
m dt 2 d 2
m dt 2 d 2 x
m dt 2 d 2 x
m dt 2 d 2 x +b
m dt 2 d 2 x +b dt
m dt 2 d 2 x +b dtdx
m dt 2 d 2 x +b dtdx
m dt 2 d 2 x +b dtdx +kx=0−−−(1)
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0λ=
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0λ= 2m
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0λ= 2m−c±
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0λ= 2m−c± c
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0λ= 2m−c± c 2
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0λ= 2m−c± c 2 −4mk
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0λ= 2m−c± c 2 −4mk
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0λ= 2m−c± c 2 −4mk
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0λ= 2m−c± c 2 −4mk
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0λ= 2m−c± c 2 −4mk
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0λ= 2m−c± c 2 −4mk As critical dumping, c
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0λ= 2m−c± c 2 −4mk As critical dumping, c 2
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0λ= 2m−c± c 2 −4mk As critical dumping, c 2 −4mk=0
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0λ= 2m−c± c 2 −4mk As critical dumping, c 2 −4mk=0Given m=0.5 kg
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0λ= 2m−c± c 2 −4mk As critical dumping, c 2 −4mk=0Given m=0.5 kgk=200 N/m
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0λ= 2m−c± c 2 −4mk As critical dumping, c 2 −4mk=0Given m=0.5 kgk=200 N/mC=
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0λ= 2m−c± c 2 −4mk As critical dumping, c 2 −4mk=0Given m=0.5 kgk=200 N/mC= 4 mk
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0λ= 2m−c± c 2 −4mk As critical dumping, c 2 −4mk=0Given m=0.5 kgk=200 N/mC= 4 mk
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0λ= 2m−c± c 2 −4mk As critical dumping, c 2 −4mk=0Given m=0.5 kgk=200 N/mC= 4 mk =
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0λ= 2m−c± c 2 −4mk As critical dumping, c 2 −4mk=0Given m=0.5 kgk=200 N/mC= 4 mk = 400
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0λ= 2m−c± c 2 −4mk As critical dumping, c 2 −4mk=0Given m=0.5 kgk=200 N/mC= 4 mk = 400
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0λ= 2m−c± c 2 −4mk As critical dumping, c 2 −4mk=0Given m=0.5 kgk=200 N/mC= 4 mk = 400 =20 kg/s
m dt 2 d 2 x +b dtdx +kx=0−−−(1)Solution is of the form x=e λt Putting x=e λt in (1)mλ 2 +bλ+k=0λ= 2m−c± c 2 −4mk As critical dumping, c 2 −4mk=0Given m=0.5 kgk=200 N/mC= 4 mk = 400 =20 kg/sDamping coefficient =20 kg/s