Math, asked by Ritasingh24, 1 month ago


Q-3) Divide the following: * =
(i) -36m²n² by - 3m²n
(ii) 48x³y4 by 6x²y²
Q-4) If x = 2, then find the values of x² + and x² + - x2
Q-5) Simplify: (+)²×(¹-3)* × (²) ²​

Answers

Answered by jk585629
0

Answer:

sorry but I don't know ( sorry )

Answered by ZaraAntisera
0

Answer:

i) \mathrm{Simplify}\:\frac{-36m^2n^2}{-3m^2n}:\quad 12n

Steps:

\frac{-36m^2n^2}{-3m^2n}

\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{-a}{-b}=\frac{a}{b}

=\frac{36m^2n^2}{3m^2n}

\mathrm{Cancel\:the\:common\:factor:}\:m^2

=\frac{36n^2}{3n}

\mathrm{Factor\:the\:number:\:}\:36=3\cdot \:12

=\frac{3\cdot \:12n^2}{3n}

\mathrm{Cancel\:the\:common\:factor:}\:3

=\frac{12n^2}{n}

=12n

ii)

\mathrm{Simplify}\:\frac{48x^3y^4}{6x^2y^2}:\quad 8xy^2

Steps:

\frac{48x^3y^4}{6x^2y^2}

\mathrm{Factor\:the\:number:\:}\:48=6\cdot \:8

=\frac{6\cdot \:8x^3y^4}{6x^2y^2}

\mathrm{Cancel\:the\:common\:factor:}\:6

=\frac{8x^3y^4}{x^2y^2}

=\frac{8xy^4}{y^2}

=8xy^2

Q.4)

2^2+2^2+\left(-2^2\right)=4

Steps:

2^2+2^2+\left(-2^2\right)

\mathrm{Follow\:the\:PEMDAS\:order\:of\:operations}

=2^2+2^2-4

=4+2^2-4

=4+4-4

=4

Q-5)

\left(+\right)^2\left(1-3\right)\times \:2^2=-8^2

Steps:

\left(+\right)^2\left(1-3\right)\times \:2^2

\mathrm{Subtract\:the\:numbers:}\:1-3=-2

=2^2\left(-2\right)^2

\mathrm{Remove\:parentheses}:\quad \left(-a\right)=-a

=-2^2\times \:2^2

\mathrm{Apply\:exponent\:rule}:\quad \:a^b\times \:a^c=a^{b+c}

2\times \:2^2=\:2^{1+2}

=-\left(+\right)^2\times \:2^{1+2}

\mathrm{Add\:the\:numbers:}\:1+2=3

=-2^3^2

2^3=8

=-8^2

Similar questions