Math, asked by Bapibigbos1326, 6 hours ago

Q.3]Find the value of x if 'the Xth power of 4 is 6

Answers

Answered by varadad25
2

Answer:

The value of x is 1.292 approximately.

Step-by-step-explanation:

We have given that,

4ˣ = 6

We have to find the value of x.

Now,

\displaystyle{\sf\:4^x\:=\:6}

Taking log to the base 4 on the both sides, we get,

\displaystyle{\sf\:\log_4\:(\:4^x\:)\:=\:\log_4\:(\:6\:)}

\displaystyle{\implies\sf\:x\:\times\:1\:=\:\log_4\:(\:6\:)\:\qquad\cdots[\:\log_b\:(\:b^k\:)\:=\:k\:]}

\displaystyle{\implies\sf\:x\:=\:\log_4\:(\:6\:)}

We know that,

\displaystyle{\pink{\sf\:\log_b\:(\:a\:)\:=\:\dfrac{\log_x\:(\:a\:)}{\log_x\:(\:b\:)}}}

\displaystyle{\implies\sf\:x\:=\:\dfrac{\log_2\:(\:6\:)}{\log_2\:(\:4\:)}}

\displaystyle{\implies\sf\:x\:=\:\dfrac{\log_2\:(\:6\:)}{2}}

\displaystyle{\implies\sf\:x\:=\:\dfrac{1}{2}\:\times\:\log_2\:(\:6\:)}

\displaystyle{\implies\sf\:x\:=\:\dfrac{1}{2}\:\times\:\log_2\:\left(\:4\:\times\:\dfrac{3}{2}\:\right)}

We know that,

\displaystyle{\pink{\sf\:\log_b\:(\:xy\:)\:=\:\log_b\:(\:x\:) \:+\:\log_b\:(\:y\:)}}

\displaystyle{\implies\sf\:x\:=\:\dfrac{1}{2}\:\times\:\left[\:\log_2\:(\:4\:)\:+\:\log_2\:\left(\:\dfrac{3}{2}\:\right)\:\right]}

\displaystyle{\implies\sf\:x\:=\:\dfrac{1}{2}\:\times\:\left[\:2\:+\:\log_2\:\left(\:\dfrac{3}{2}\:\right)\:\right]}

We know that,

\displaystyle{\pink{\sf\:\log_b\:\left(\:\dfrac{x}{y}\:\right)\:=\:\log_b\:(\:x\:)\:-\:\log_b\:(\:y\:)}}

\displaystyle{\implies\sf\:x\:=\:\dfrac{1}{2}\:\times\:[\:2\:+\:\log_2\:(\:3\:)\:-\:\log_2\:(\:2\:)\:]}

\displaystyle{\implies\sf\:x\:=\:\dfrac{1}{2}\:\times\:[\:2\:+\:\log_2\:(\:3\:)\:-\:1\:]}

\displaystyle{\implies\sf\:x\:=\:\dfrac{1}{2}\:\times\:[\:2\:-\:1\:+\:\log_2\:(\:3\:)\:]}

\displaystyle{\implies\sf\:x\:=\:\dfrac{1}{2}\:\times\:[\:1\:+\:\log_2\:(\:3\:)\:]}

\displaystyle{\implies\sf\:x\:=\:\dfrac{1\:+\:\log_2\:(\:3\:)}{2}}

\displaystyle{\implies\sf\:x\:\approx\:\dfrac{1\:+\:1.584}{2}}

\displaystyle{\implies\sf\:x\:\approx\:\dfrac{2.584}{2}}

\displaystyle{\implies\underline{\boxed{\red{\sf\:x\:\approx\:1.292}}}}

Similar questions