Q.3. If the zeroes of the quadratic polynomial x + (a + 1) x + bare 2 and -3, then
find 'a' & 'b'?
Answers
Step-by-step explanation:
Q:-solve and verify the equation
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️
══════════XXX═════════════
cancelling 6( R.H.S) By 3 From L.H.S
CHECK:-
THEREFORE,L.H.S=R.H.S
VERIFIED✔️
══════════XXX═════════════
HOPE IT HELPS YOU..
_____________________
Thankyou:)
Step-by-step explanation:
f(x) = kx³ – 8x² + 5
Roots are α – β , α & α +β
Sum of roots = – (-8)/k
Sum of roots = α – β + α + α +β = 3α
= 3α = 8/k
= k = 8/3α
or we can solve as below
f(x) = (x – (α – β)(x – α)(x – (α +β))
= (x – α)(x² – x(α+β + α – β) + (α² – β²))
= (x – α)(x² – 2xα + (α² – β²))
= x³ – 2x²α + x(α² – β²) – αx² +2α²x – α³ + αβ²
= x³ – 3αx² + x(3α² – β²) + αβ² – α³
= kx³ – 3αkx² + xk(3α² – β²) + k(αβ² – α³)
comparing with
kx³ – 8x² + 5
k(3α² – β²) = 0 => 3α² = β²
k(αβ² – α³) = 5
=k(3α³ – α³) = 5
= k2α³ = 5
3αk = 8 => k = 8/3α
(8/3α)2α³ = 5
=> α² = 15/16
=> α = √15 / 4