Q.3 In the given figure, bisectors of angleABC and 4 BCA intersect each other at O. If angleBAC =
50° Find BOC.
Attachments:
Answers
Answered by
10
Answer:
Since OB bisects <ABC,
<OBC=<OBA
Now,
<OBC+<OBA=<ABC
⇒<OBC+<OBC=<ABC(<OBC=<OBA)
⇒<ABC=2<OBC ...(1)
Similarly,since OC bisects <ACB,
<ACB=2<OCB ...(2)
In triangle ABC,
<BAC+<ABC+<ACB=180º(Angle sum property)
⇒50º+≺ABC+<ACB=180º(Given:<BAC=50º)
⇒<ABC+<ACB=130º
From eq.(1) and eq.(2),
2<OBC+2<OCB=130º
⇒2(<OBC+<OCB)=130º
⇒<OBC+<OCB=65º ...(3)
Now, in triangle BOC,
<OBC+<OCB+<BOC=180º(Angle sum property)
From eq.(3),
65º+≺BOC=180º
⇒<BOC=115º.
(Note:- While writing in N.B., please use the proper sign for angle)
Answered by
0
Answer:
this is the right answer
Similar questions