Math, asked by omkarbedre, 1 year ago

Q.3 sin 30° + cos45°+ tan 180° =
a) 1+52
b) 1.2
c) 1+2
a) 1-52​

Answers

Answered by charliejaguars2002
18

Answer:

\large\boxed{3\sin30^{\circ}+\cos45^{\circ}+\tan180^{\circ}=\boxed{\frac{3+\sqrt{2} }{2} }}}}}

Step-by-step explanation:

To solve this problem, first you have to use sin, cos, and tan the numbers from left to right.

Given:

3sin(30°)+=cos(45°)+tan(180°)

Solutions:

First, you have to use the following trivial identify.

\displaystyle \sin(30^{\circ})=\frac{1}{2}

\displaystyle \cos(45^{\circ}})=\frac{\sqrt{2} }{2}

\displaystyle \tan(180^{\circ}})=0

\displaystyle 3*\frac{1}{2}+\frac{\sqrt{2} }{2}+0

Solve.

\displaystyle 3*\frac{1}{2}=\frac{3}{2}

\displaystyle \frac{3}{2}+\frac{\sqrt{2} }{2}+0

Then, you combined the fractions from left to right.

\displaystyle \frac{3+\sqrt{2} }{2}+0=\boxed{\frac{3+\sqrt{2} }{2} }

Therefore, the correct answer is 3+√2/2.

Answered by Anonymous
43

AnswEr :

  • Sin 30° = \large\frac{1}{2}
  • Cos 45° = \large\frac{\sqrt{2}}{2}
  • Tan 180° = 0

A.T.Q

 \longrightarrow \sin(30)  +  \cos(45)  +  \tan(180)

 \large \longrightarrow \frac{1}{2}  +  \frac{ \sqrt{2} }{2}  + 0

 \large \longrightarrow \frac{(1 +  \sqrt{2} + 0) }{2}

  \huge\longrightarrow \frac{(1 +  \sqrt{2}) }{2}

\huge{\red{\ddot{\smile}}}

Similar questions