Math, asked by singhmonu9244, 4 months ago


Q)32 If 4 cot x = 3, then find the value of
sin x +cOS X upon sin x +cos x​

Answers

Answered by SuitableBoy
50

{\huge{\rm{\underline{\underline{Question:-}}}}}

Q) If 4cot x = 3 , then find the value of

 \sf \:  \frac{sin \: x - cos \: x}{sin \: x \:  + cos \: x}  \\

 \\

{\huge{\underline{\underline{\rm{Answer\checkmark}}}}}

 \\

Given :

  • 4cot x = 3

 \\

To Find :

  •  \rm \:  \frac{sin \: x - cos \: x}{sin \: x  + cos \: x}  \\

 \\

Solution :

 \rm \: 4cot \: x = 3

 \mapsto \rm \: cot \: x =  \frac{3}{4}  \\

 \mapsto \rm \:  \frac{base}{perpendicular}  =  \frac{3}{4}  \\

Consider a Right angled triangle in which

  • base = 3a
  • perpendicular = 4a

Using Pythagoras Theorem -

 \sf \: hypotenuse  {}^{2}   = base { }^{2}  + perpendicular {}^{2}

  \sf\leadsto \: hypotenuse {}^{2}  =  {(3a)}^{2}  +  {(4a)}^{2}

 \leadsto \sf \: hypotenuse {}^{2}  = 9 {a}^{2}  + 16 {a}^{2}

 \leadsto \sf \: hypotenuse =  \sqrt{25 {a}^{2} }

 \leadsto{ \boxed{ \sf \: hypotenuse = 5a \: }}

So ,

 \sf \leadsto sin \: x =  \frac{perpendicular}{hypotanuse}  \\

 \leadsto \sf \: sin \: x =  \frac{4 \cancel{a}}{5 \cancel{a}}  \\

 \leadsto \underline{ \boxed{ \sf \: sin \: x =  \frac{4}{5} \:  }}

And ,

 \leadsto \sf \: cos \: x  =  \frac{base}{hypotenuse}  \\

 \leadsto \sf \: cos \: x =  \frac{3 \cancel{a}}{5 \cancel{a}}  \\

 \leadsto \underline{ \boxed{ \sf \: cos \: x =  \frac{3}{5}  \: }}

Now , Just put the values in the term which we want to simplify .

 \rm \mapsto \:  \frac{sin \: x - cos \: x}{sin \: x + cos \: x}  \\

 \mapsto \rm \:  \frac{ \frac{4}{5}  -  \frac{3}{5} }{ \frac{4}{5} +  \frac{3}{5}  }  \\

 \mapsto  \:  \frac{ \frac{4 - 3}{ \cancel5} }{ \frac{4 + 3}{ \cancel5} }  \\

 \mapsto \:  \frac{1}{7}  \\

So ,

  \green{\boxed{ \rm \:  \frac{sin \: x - cos \: x}{sin \: x + cos \: x}  =  \frac{1}{7}} }

 \\

_________________________

 \\

Formulas Used :

  •  \tt \: cot \: x =  \frac{base}{perpendicular}  \\
  •  \tt \: hypotenuse {}^{2}  = perpendicular {}^{2}  + base {}^{2}
  •  \tt \: sin \:  \theta =  \frac{perpendicular}{hypotenuse}  \\
  •  \tt \: cos \:  \theta =  \frac{base}{hypotenuse}  \\

 \\

Know More :

  •  \tt \: tan \:  \theta =  \frac{perpendicular}{base}  \\
  •  \tt \:  {sin}^{2}  \:  \theta +  {cos}^{2}  \:  \theta = 1
  •  \tt \:  {tan}^{2}  \:  \theta + 1 =  {sec}^{2}  \:  \theta
  •  \tt \: 1 +  {cot}^{2}  \:  \theta =  {cosec}^{2}  \:  \theta

Answered by kikii121103
5

the above answer is absolutely correct

Similar questions