Math, asked by ajaywadhai638, 13 hours ago

Q. 4) Evaluate w.r.x. , y = cot cot" (37)

Answers

Answered by IIMidnightHunterII
1

\large\textsf{${\large\textsf{L.S.A.}}_{\large\textsf{( \; Cuboid \; )}} = \large\textsf{2h ( l + b )}$}

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cuboid \; )}} = \large\textsf{2 ( lb + bh + hl )}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cuboid \; )}} = \large\sf{l\times b\times h}$}

\large\textsf{                                                               }

\large\textsf{${\large\textsf{L.S.A.}}_{\large\textsf{( \; Cube \; )}} = \large\sf{4\times l^2}$}

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cube \; )}} = \large\sf{6 \times l^2}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cube \; )}} = \large\sf{l^2}$}

\large\textsf{                                                               }

\large\textsf{${\large\textsf{C.S.A.}}_{\large\textsf{( \; Cylinder \; )}} = \large\sf{2 \times \pi \; rh}$}

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cylinder \; )}} = \large\sf{2\pi r \times ( r + h )}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cylinder \; )}} = \large\sf{\pi r^2h}$}

\large\textsf{                                                               }

\large\textsf{${\large\textsf{C.S.A.}}_{\large\textsf{( \; Cone \; )}} = \large\sf{\pi rl}$}

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cone \; )}} = \large\sf{\pi r \times ( r + l )}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cone \; )}} $} \large\textsf{ =$\cfrac{\large\textsf{1}}{\large\textsf{3}}$}\large\sf{\times \pi r^2h}

\large\textsf{                                                               }

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Sphere \; )}} = \large\sf{4\pi r^2}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Sphere \; )}} $} \large\textsf{ =$\cfrac{\large\textsf{4}}{\large\textsf{3}}$}\large\sf{\times \pi r^3}

Similar questions