Math, asked by lekhrajsinotiya007, 3 months ago

Q.4. Expand log x in the power of (x-1) and hence evaluate
Expand close to the
log1.2 correct to four decimal places​

Answers

Answered by nandhagopaln041
5

Answer:

I hope help for you..........

Attachments:
Answered by siddharthapriy72
0

Answer:

log(1.2) = 0.2062

Step-by-step explanation:

Let f (x) = log x

f'(x) = \frac{1}{ x^{} }

f"(x) = -\frac{1}{ x^{2} }

f"'(x) = \frac{2}{ x^{3} }

Now, we know that Taylor series expansion of a function f(x) about a number 'a' is :

f(x) = Σ \frac{f^{(n)}(a) . (x-a)^{n}  }{n!}

So, Taylor series expansion of a function log x  about 1 is

=> f(x) =  f (1) . (x - 1 )⁰ + f' (1) .(x - 1 )¹  +  f" (1) . \frac{(x-1)^{2} }{2!} + . .

Now substituting the values of f(x), f'(x) , f''(x), . .we get

f(x) = 0 + (x -1) - \frac{(x-1)^{2} }{2} +  \frac{(x-1)^{3} }{3}  -  \frac{(x-1)^{4} }{4}  + . .

=>f(1.2) = 0 + (1.2 -1) - \frac{(1.2-1)^{2} }{2} + \frac{(1.2-1)^{3} }{3} - \frac{(1.2-1)^{4} }{4} + . .

=>f(1.2) = 0 + 0.2 - 0.02 + 0.0266 - 0.0004 + . .

=>f(1.2) = 0.2062

=> log(1.2) = 0.2062

Similar questions