Math, asked by jigglysam005, 5 months ago

Q.4. Find the area of the shaded region in figure.​

Attachments:

Answers

Answered by PharohX
5

Answer:

 \large{ \green{ \underline{ \tt \: Given : -  }}}

 \sf \: Sides \:  \:  of \:  \:  triangle   : -

 \sf \triangle \: ABC \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \sf \: AC = 52 \: cm \\  \sf \: BC = 48 \: cm

 \sf  \triangle \: ABD \\  \\  \sf \: AD = 12 \: cm \\  \sf \: BD = 16 \: cm

  \\  \sf \: For \:  finding \:  the \:  side \:  AB

 \sf \: Taking \:   \: \triangle  ABD

 \rm \: \bold{ Appling  \:  \: pythagoras \:   \: theorem :  -  }

 \sf \: ( {hypotenious)}^{2}  = ( {base)}^{2}  + ( {perpen}^{r}) {}^{2}

 \sf \: AB {}^{2}  = AD {}^{2}  +  {BD}^{2}

 \implies \sf \: AB {}^{2}  =  {12}^{2}  +  {16}^{2}

 \implies \sf \: AB {}^{2}  = 144 + 256

 \implies \sf \: AB {}^{2}  = 400

 \implies \sf \: AB {}^{2}  =  {20}^{2}

 \sf \: Taking \:   \: Square  \: \:  root  \:  \: both \:  \:  sides :  -

 \implies \sf \: AB   =  20 \: cm

 \rm \: Now \: \:   in \:  \triangle  ABC

 \rm \: Appling  \:  \: Heron's \:  Formula :   -

 \rm So \:  first  \: we \:  need \:  to \:  find \:  perimeter \:  \\  \rm \: of \:  \:  \triangle ABC \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \sf \: Perimeter \:  of \:  \triangle ABC = sum \: of \: all \: sides

 \sf \: Perimeter (p) = 20 + 48 + 52

\sf \: Perimeter (p) = 120 \: cm

 \sf \: Now \:  \:  semi  \: \:  perimeter (s) =  \frac{perimeter}{2}  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf \:  =  \frac{120}{2}    \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 60 \: cm

 \sf \: Now  \: \:  area \:  \:  of \triangle ADB =  \frac{1}{2} (base) \times (height) \\

 \green{ \sf  We   \: \: are \: using \: this \:  formula \:  \:  because \:} \\  \green{ \sf \:   \triangle  \: ADB  \: is \:  right  \:  \: triangle \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  }

 \sf \: Now  \: \:  area \:  \:  of \triangle ADB =  \frac{1}{2} \times  (12) \times (16) \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    =  \sf \:96 \:  {cm}^{2}

 \sf \: Area \:  \:  of \:  \:  \triangle  \: ABC

 \rm \: Appling  \:  \: Heron's \:  Formula :   -

 \sf \: Area \:  of  \: \triangle ABC =  \sqrt{s(s - a)(s - b)(s - c)}

  \sf Here \:  \:  a,b,c \:  \:  are \:  the \:  \:  sides \:   \: of \:  \:  \triangle ABC

 \sf \: a = 20cm \\  \\  \sf \: b = 48cm \\  \\  \sf \: c = 52 \: cm

 \sf \: Hence  \:  \: the \:  \:  area :  -

 \sf =  \sqrt{60(60 - 20)(60 - 48)(60 - 52)}

 =  \sf \sqrt{60 \: (40) \: (12) \: (8)}

 =  \sf \:  \sqrt{60 \times 40 \times 12 \times 8}  \\  \\  \sf \:  =  \sqrt{480 \times 480}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \sf \:  = 480  \: {cm}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \sf \: Now \:  area \:  of \:  shaded \:  region :  -

 \sf \: =  Area  \: of  \: \triangle ABC - Area \:  of  \: \triangle ABD

 \sf \:  = 480 - 96  \\

  \sf \: = 384 \:  {cm}^{2}

 \sf Now \:  area \:  of \:  shaded \:  region    \:  \green{\boxed{ \sf384  \: {cm}^{2}} }

Thank you.

Similar questions