Math, asked by narendrajaiswal504, 10 months ago

Q. 4 Find the product using
suitable identity.
( \frac{a}{4} +  \frac{2b}{7}) \: ( \frac{a}{4}  +  \frac{2b}{7}

Answers

Answered by choodamani1978
0

Answer:

4 is the answer I think so

Answered by ƁƦƛƖƝԼƳƜƛƦƦƖƠƦ
4

Answer:

 \huge{ \underline{given }}

 \bold{{ \sf( \frac{a}{4} + \frac{2b}{7}) \: ( \frac{a}{4} + \frac{2b}{7} )}}

 \sf{we \: need \: to \: use \: the \: identity}

 \sf{ \red{ {(a + b)}^{2} }}

 \sf{ {(a + b)}^{2}  =  {a}^{2} + 2(a b) +  {b}^{2}  }

 \sf{ =  >   \frac{a}{4} }^{2}  + 2( \frac{a}{4}  \times \frac{2b}{7} )  + { \frac{2b}{7} }^{2}

  \sf{ =  >  \frac{ {a}^{2} }{16}  + 2( \frac{2ab}{28} ) +  \frac{ {4b}^{2} }{49} }

 \sf \blue{ \green{ \underline{ \underline{additional \:information : }}}}

 \bold{ {(a + b)}^{2} =  {a}^{2} + 2ab +  {b}^{2}   }

 \bold {(a - b)}^{2}  =  {a}^{2}  - 2ab +  {b}^{2}

 (x + a)(x + b)  \\   \\ =  >   {x}^{2} + (a + b)x + ab

Similar questions