Math, asked by kapilkurchaniya98, 1 month ago

Q.4 Find the value of limx → 0⁡(Sin(2x))Tan2 (2x)? *

a) e0.5

b) e-0.5

c) e-1

d) e​

Answers

Answered by gyaneshwarsingh882
0

Answer:

Step-by-step explanation:

im  

x→0

 

x  

3

 

tan2x−sin2x

 

=lim  

x→0

 

 

x  

3

 

cos2x

sin2x

−sin2x

 

 

=lim  

x→0

sin2x  

 

x  

3

 

cos2x

1

−1

 

 

=lim  

x→0

 

x  

3

 

sin2x

(  

cos2x

1−cos2x

)

=lim  

x→0

 

x  

3

 

sin2x

(  

cos2x

2sin  

2

x

)

=lim  

x→0

 

2

1

×2x

sin2x

×  

x  

2

 

2sin  

2

x

×  

cos2x

1

 using multiple angle formula cos2x=1−2sin  

2

x

=lim  

x→0

2(  

2x

sin2x

)×2  

x  

2

 

sin  

2

x

×  

cos2x

1

 by rearranging the terms

=2×1×2×1×  

cos0

1

 since lim  

θ→0

 

θ

sinθ

=1

=4 since cos0=1

Answered by arunkumarnaik71
0

Answer:

limx → 0⁡(Sin(2x))Tan2 (2x)?

Similar questions