Q.4 Find the value of limx → 0(Sin(2x))Tan2 (2x)? *
a) e0.5
b) e-0.5
c) e-1
d) e
Answers
Answered by
0
Answer:
Step-by-step explanation:
im
x→0
x
3
tan2x−sin2x
=lim
x→0
⎝
⎜
⎜
⎛
x
3
cos2x
sin2x
−sin2x
⎠
⎟
⎟
⎞
=lim
x→0
sin2x
⎝
⎜
⎜
⎛
x
3
cos2x
1
−1
⎠
⎟
⎟
⎞
=lim
x→0
x
3
sin2x
(
cos2x
1−cos2x
)
=lim
x→0
x
3
sin2x
(
cos2x
2sin
2
x
)
=lim
x→0
2
1
×2x
sin2x
×
x
2
2sin
2
x
×
cos2x
1
using multiple angle formula cos2x=1−2sin
2
x
=lim
x→0
2(
2x
sin2x
)×2
x
2
sin
2
x
×
cos2x
1
by rearranging the terms
=2×1×2×1×
cos0
1
since lim
θ→0
θ
sinθ
=1
=4 since cos0=1
Answered by
0
Answer:
limx → 0(Sin(2x))Tan2 (2x)?
Similar questions