Q.4
If tan 90 = (Where 0 << 6.) Find the value of
18
(3 cosec 30 – 4 sec 30)
Answers
Let 3x=y
Given: tan(9x)=tan(3y)=34
⟹sin(3y)cos(3y)=34
⟹4sin(3y)−3cos(3y)=0
⟹5∗(45∗sin(3y)−35∗cos(3y))=0−−(1)
Let cos3α=45−−(2)
⟹sin3α=35−−(3)
(1)⟹5∗(cos3αsin3y−sin3αcos3y)=0
⟹5∗sin(3α−3y)=0−−(4)
Need:
Let p=3csc3x−4sec3x=3sin3x−4cos3x
⟹p=3siny−4cosy=3cosy−4sinysinycosy
⟹p=5∗(35.cosy−45.siny)sinycosy−−(5)
Substituting (2) and (3) in (5)
⟹p=5∗2∗sin3αcosy−cos3αsiny2sinycosy
⟹p=5∗2∗sin3αcosy−cos3αsiny2sinycosy
⟹p=10∗sin(3α−y)sin2y−−(6)
Following are possibilities for (2):
3(α−y)=0
⟹y=α−−(7a)
Substituting (7a) in (6)
p=10∗sin(3α−α)sin(2α)
⟹p=10∗sin2αsin2α=10−−(8a)
3(α−y)=π
⟹y=α−π3−−(7b)
Substituting (7b) in (6)
p=10∗sin(3α−α+π3)sin2(α−π3)
⟹p=10∗sin(2α+π3)sin(2α−2π3)
⟹p=10∗sin(2α−2π3+π)sin(2α−2π3)
⟹p=10∗(−1)∗sin(2α−2π3)sin(2α−2π3)
⟹p=−10—(8b)
3(α−y)=3π
⟹y=α−π−−(7c)
Substituting (7c) in (6)
p=10∗sin(3α−α+π)sin2(α−π)
⟹p=10∗sin(2α+π)sin(2α−2π)
⟹p=10∗(−1)∗sin(2α)(−1)∗sin(2α)
⟹p=10—(8c)
Ans:
From (8a) , (8b) , (8c) , possible answers are ±10